Wednesday, February 1, 2023

Wireless Radiation Exposure Limits

Maximum recommended radio frequency exposure levels
(power density) by source


For the general public, the recommended maximum whole-body average radio frequency exposure limit as measured by the incident power density varies by source:

FCC (based on acute heating averaged over 30 minutes)

https://www.rfcafe.com/references/electrical/fcc-maximum-permissible-exposure.htm

Recommended levels:

2,000,000 µW/m2 (for 30 - 300 MHz)

frequency (in Hz)/150 µW/m2 (for 300 MHz - 1500 MHz)

10,000,000 µW/m2 (for 1500 MHz - 100,000 MHz)


ICNIRP (2020) (based on acute heating averaged over 30 minutes)

https://www.icnirp.org/cms/upload/publications/ICNIRPrfgdl2020.pdf

Recommended levels:

2,000,000 µW/m2 (for 30 - 400 MHz)

frequency (in Hz)/200 µW/m2 (for 400 MHz - 2000 MHz)

10,000,000 µW/m2 (for 2000 MHz - 300,000 MHz)

 
China


400,000 µW/m2


Russia


100,000 µW/m2


Council of Europe, Resolution 1815

https://assembly.coe.int/nw/xml/XRef/Xref-XML2HTML-en.asp?fileid=17994

Recommended level: 106 µW/m2


European EMF guideline for the prevention, diagnosis and treatment of EMF-related health problems and illnesses.(Belyaev et al,, 2016)

https://www.degruyter.com/document/doi/10.1515/reveh-2016-0011/html?lang=en

Recommended levels:

FM radio: 100 - 10,000 µW/m2

Cell phone frequencies: 1 - 100 µW/m2

Wi-Fi (2400 and 5000 MHz): 0.1 - 10 µW/m2


BioInitiative Report (2012)

https://bioinitiative.org/wp-content/uploads/pdfs/section_1_table_1_2012.pdf

Recommended levels: 3–6 µW/m2


Building Biology Institute guideline for sleeping areas (2015)

https://static1.squarespace.com/static/55517edbe4b0b260d3936ec1/t/5e3ca9927d681d130c3c0364/1581033875399/SBM-2015_Building_Biology_Evaluation_Guideline_Values.pdf

Recommended level: <0.1 µW/m2


Definitions:

Mhz = megahertz = million cycles per second

µW/m2 = microwatts per square meter = millionths of a watt per square meter

--

April 19, 2022


Leading experts on wireless radiation biological effects call for stronger exposure limits in new research review

On April 19, Dr. Henry Lai and B. Blake Levitt published an extensive review of the research on the biological effects of wireless radiation which calls for stronger limits on radio frequency radiation exposure to protect human health. According to their paper, governments should adopt a maximum full-body Specific Absorption Rate (SAR) of 1.65 milliwatts per kilogram which is 48 times lower than the wireless exposure limits that allow the public to be exposed to a full-body SAR of 80 milliwatts per kilogram and 960 times lower than the 1.6 watts per kilogram cell phone exposure limit for the head and torso in the U.S. The paper was published in the peer-reviewed journal, Electromagnetic Biology and Medicine (see abstract and excerpts below).

Dr. Lai is professor emeritus at the University of Washington. In his long research career he has focused on the biological effects of non-ionizing electromagnetic fields and their possible medical applications with research end points covering molecular biology, neurochemistry, behavior, and cancer treatment. He has published over 100 peer-reviewed research papers.


Lai H, Levitt BB. The roles of intensity, exposure duration, and modulation on the biological effects of radiofrequency radiation and exposure guidelines. Electromagn Biol Med. 2022 Apr 3;41(2):230-255. doi: 10.1080/15368378.2022.2065683.

Abstract

In this paper, we review the literature on three important exposure metrics that are inadequately represented in most major radiofrequency radiation (RFR) exposure guidelines today: intensity, exposure duration, and signal modulation. Exposure intensity produces unpredictable effects as demonstrated by nonlinear effects. This is most likely caused by the biological system’s ability to adjust and compensate but could lead to eventual biomic breakdown after prolonged exposure. A review of 112 low-intensity studies reveals that biological effects of RFR could occur at a median specific absorption rate of 0.0165 W/kg. Intensity and exposure duration interact since the dose of energy absorbed is the product of intensity and time. The result is that RFR behaves like a biological “stressor” capable of affecting numerous living systems. In addition to intensity and duration, man-made RFR is generally modulated to allow information to be encrypted. The effects of modulation on biological functions are not well understood. Four types of modulation outcomes are discussed. In addition, it is invalid to make direct comparisons between thermal energy and radiofrequency electromagnetic energy. Research data indicate that electromagnetic energy is more biologically potent in causing effects than thermal changes. The two likely function through different mechanisms. As such, any current RFR exposure guidelines based on acute continuous-wave exposure are inadequate for health protection.

Excerpts

"Over the last 25–30 years, significant information has been published that in other regulated areas would have resulted in re-examination and adjustments to allowable exposure limits. This has not been the case with these two groups [the FCC and ICNIRP] which adhere to a model based on obsolete scientific evidence, especially in light of the new 5G network that uses higher frequencies and novel modulation forms that have never been used before in broad civilian telecommunications and which are poorly studied."

"RFR effects have been observed at low intensities (< 0.4 W/kg) – a list of which is included in Supplement 1 – far below the guidelines. This points to both the nonlinearity of how living systems couple with nonionizing radiation as well as the inadequacy of acute thresholds. The studies encompass many different biological effects to myriad systems, including: apoptosis induction, adrenal gland activity, blood–brain barrier permeability, brain transmitter levels, calcium concentration in heart muscle, calcium efflux, calcium movement in cells, cell growth, cognitive functions, cellular damage in liver, decreased cell proliferation, embryonic development, endocrine changes, enolose activity, genetic effects, hippocampal neuronal damage, immunological functions, kidney development, memory functions, latency of muscular contraction, membrane chemistry, nerve cell damage, metabolic changes, neural electrical activity, oxidative stress, plant growth, prion level, protein changes, renal injury, serum testosterone concentration, heat-shock protein induction, testis morphology, testosterone synthesis, thymidine incorporation, and ultrastructural alteration in cell cytoplasm. In fact, there are not many physiological functions in humans, animals, or plants that are not affected by low-level RFR."

"As reflected in Supplement 1, SARs at which effects were observed were available from 112 studies. Of these, 75 (67%) were in vivo exposure studies with whole body/organ SARs available. The other 37 (33%) studies were in vitro experiments.... The level at which biological effects occur represents data from in vivo and in vitro and acute and chronic/repeated-exposure experiments. There is a very wide range of effects seen. With an exposure that induces a SAR of 0.0165 W/kg, and using a ten-fold protection, the SAR would be 0.00165 W/kg (i.e., 1.65 mW/kg). For rate of energy absorption in body organs, 0.00165 W/kg is far below the maximum level allowed in the guidelines (whether over 1 or 10 gm of tissue as per FCC/ICNIRP allowances). Given the large body of work as illustrated in Supplement 1, the SAR at, or below, 4 W/kg as a safe threshold is insupportable."

"The duration of exposure is another important factor in biological effects. Other than demarcations for whole body exposures averaged over 30 minutes and local body areas averaged over 6 minutes, neither FCC nor ICNIRP address duration, especially pertaining to long-term and low-level RFR exposures. These are prevalent in both near-field exposures to people with WiFi routers, for example, as well as cell phones, and far-field exposures from infrastructure that have created chronic rising ambient background levels (Levitt et al. 2021a). The guidelines are written only for short-term acute durations.... What we do know is that the supposition that all exposures are the same above and below the SAR threshold set by FCC/ICNIRP is fundamentally flawed in light of the most current research. One feasible and logical solution to such uncertainties regarding duration as an exposure factor would be to adopt an SAR level commensurate with the studies summarized in Supplement 1 at no higher than 0.00165 W/kg, no matter the exposure conditions."

"It is generally believed that modulated RFR is more biologically active than continuous-wave (CW) radiation, i.e., the carrier-wave. To understand the biological and possible hazardous health effects of RFR, it is therefore important to understand modulation effects. Below we discuss what is known about modulation from the research literature (mostly from 1990 to date) and examine the claim that modulation makes RFR more biologically significant...There is research showing no significant biological effects of CW-RFR (Table 1a) but there are also studies that reported CW-RFR effects too (Table 1b). The reason why CW-RFR produced effects in some studies but not others is unknown. Both types of studies (with “effect” and “no effect” outcomes) involved many different biological endpoints, exposure intensities, and duration of exposure – with no discernible differences. A possible explanation is that different tissue types respond differently to CW-RFR. But that just adds another level of inquiry. One of the most puzzling observations is when CW caused an effect but modulation did not (e.g., Kubinyi et al. 1996; Luukkonen et al. 2009). In some studies, a modulated field produced an effect that was not produced by CW. These observations may indicate that the CW carrier-wave itself and modulation act on different mechanisms.... Differences in responses between CW and modulated fields of the same frequency and incident power density provide strong proof that non-thermal effects occur since the two conditions should produce the same amount of heating.... Some studies reported that different frequencies of modulation caused different biological responses .... CW and modulated fields can cause the same effects but with different degrees of biological activity and intensity of reactions. In most instances, a modulated field was found to be more potent than CW versus only one study in which the opposite was reported (Persson et al. 1997).... To add to the complexities described above, effects with modulated fields have also been shown to depend on exposure duration.... there are many studies that used intermittent exposure (e.g., 10 min ON/10 min OFF) instead of continuous exposure with the supposition that intermittent exposure is more biologically active. But not much data showed this to be true.... There are many studies using pulsed fields (i.e., mobile phone signals are pulsed), but there are not many studies that compared pulsed and CW fields of the same SAR in the same study. However, there are reports that effects only occurred with a pulsed field but not CW.... there are many studies showing effects of RFR on the hippocampus..."

"Oxidative changes and stress have been reported in many papers on exposure to electromagnetic fields (Lai 2020; Yakymenko et al. 2016). These are the most consistent cellular responses to RFR exposure. Mechanisms have been proposed to account for oxidative effects that may involve the low-frequency component of modulation (e.g., see Barnes and Greenebaum 2015; Castello et al. 2021). ... But there is not enough data to conclude that modulation effects are caused by oxidative processes. In fact some effects of CW exposure alone also found changes in free radical mechanisms."

"It is important to point out as significant proof of non-thermal RFR effects that CW and modulated-waves of the same frequency and incident power density can/and do produce different effects. The bottom line is that certainty is elusive regarding precise effects in all circumstances. What is clear is that both modulation and continuous-wave RFR are biologically active and both should be considered in exposure guidelines. In situations where enough evidence exists to warrant specific caution, such as with pulsed fields used in cell phones and phased modulation with 5G, particular attention should be paid to include modulation in the guidelines beyond the suppositions of safety contained within the safety allowances. Peak exposures must also be factored in and not just the averaged values which only hide their significance."

"It is apparent that the biological outcome of changing the intensity and duration of RFR exposure is basically unpredictable. This is mainly due to the complex nature of the biological system studied. Intensity and duration can interact and produce different response patterns as shown in the literature reviewed above.

It is also apparent that how RFR modulation affects biological functions is difficult to quantify. Observed effects are multi-variant and involve many factors such as intensity, carrier frequencies and modulation, the modulation waveform itself, exposure duration, and properties of the exposed object. Not enough research data are presently available to provide an explanation or prediction of modulation effects under all circumstances. It may also turn out that modulation is of little major health concern or conversely that it is the only factor that matters – evidence is thus far too contradictory regarding modulation’s ability to consistently enhance the biological effects of carrier-waves. Then again, with most modulation forms the carrier-wave is completely altered. All of this awaits proper investigation with comparison studies. In the meantime, there are legitimate reasons for concern, given the contradictions in the literature.

In general, anthropogenic RFR – with highly unusual waveform characteristics and intensities that do not exist in the natural world – is new to the environment and thus has not been a factor in the evolution of species. Living organisms evolved over millions of years in the presence of static and extremely-low frequency (ELF) electromagnetic fields. These fields play critical roles in their survival, e.g., in migration, food foraging, and reproduction, etc. (see Levitt et al. 2021b). Living organisms are extremely sensitive to the presence of these environmental fields and thus, they can easily be disturbed by man-made EMF. RFR probably acts upon and modifies these primordial EMFs and affects biological functions. Interactions of static/ELF EMF and RFR are basically not well studied, not to mention the mechanisms of involvement of RFR modulations. The interactions are inevitably complex. Such interaction studies would provide answers to wildlife effects.

Regarding the perennial thermal- versus non-thermal- effects criticism inherent in human RFR exposure guidelines, it must be said that the underlying mechanisms of effects should not be a matter of concern in setting of exposure guidelines as is common today. What is important is the level at which energy absorption causes an effect. One such powerful proof – among so very many others – of non-thermal effects is evidenced in the fact that CW and modulated-waves of the same frequency and incident power density can produce different effects, as seen in the modulation section of this paper and Table 2."

"When effects continue to be observed over a long period of time that go against prevailing beliefs, even when mechanisms remain imperfectly understood, the appropriate course of regulatory action is to examine the underlying basis upon which an original premise was formed. When proven incomplete or invalid by new information, the change in a regulatory course is not only justified but is imperative. Disproven or incomplete deductions of how RFR affects living cells and tissues, as well as suppositions of safety for exposed individuals and the environment are insupportable given the wealth of studies to draw from today that have filled in many gaps. We need to more responsibly address the increasing near- and far-field RFR exposures of contemporary life with an eye toward 5G technology’s unique characteristics. A new conceptual framework is called for."


==


Study: Wireless radiation exposure for children should be hundreds of times lower than current federal limits

Environmental Working Group, July 2021

WASHINGTON – A peer-reviewed study by the Environmental Working Group recommends stringent health-based exposure standards for both children and adults for radiofrequency radiation emitted from wireless devices. EWG’s children’s guideline is the first of its kind and fills a gap left by federal regulators.

The study, published in the journal Environmental Health, relies on the methodology developed by the Environmental Protection Agency to assess human health risks arising from toxic chemical exposures. EWG scientists have applied the same methods to radiofrequency radiation from wireless devices, including cellphones and tablets.

EWG recommends the Federal Communications Commission, or FCC, adjust its woefully outdated health standards for wireless radiation, last revised a quarter-century ago, well before wireless devices became ubiquitous, heavily used appliances synonymous with modern life. The recommendation draws on data from a landmark 2018 study from the National Toxicology Program, or NTP, one of the largest long-term studies on the health effects of radiofrequency radiation exposure.

EWG’s new guidelines, the first developed in the U.S. to focus on children’s health, recommend that children’s exposure overall be 200 to 400 lower than the whole-body exposure limit set by the FCC in 1996.

The EWG recommended limit for so-called whole-body Specific Absorption Rate, or SAR, for children is 0.2 to 0.4 milliwatts per kilogram, or mW/kg. For adults, EWG recommends a whole-body SAR limit of 2 to 4 mW/kg, which is 20 to 40 times lower than the federal limit.

The FCC has not set a separate standard for children. Its standards for radiofrequency radiation set a maximum SAR of 0.08 watts per kilogram, or W/kg, for whole-body exposure and an SAR for localized spatial peak – the highest exposure level for a specific part of the body, such as the brain – of 1.6 W/kg for the general population.

The NTP studies examined the health effects of 2G and 3G wireless radiation and found there is “clear evidence” of a link between exposure to radiofrequency radiation and heart tumors in laboratory animals. Similar results were reported by a team of Italian scientists from the Ramazzini Institute.

Cellphone radiation was classified a “possible carcinogen” in 2011 by the International Agency for Research on Cancer, part of the World Health Organization, a conclusion based on human epidemiological studies that found an increased risk of glioma, a malignant brain cancer, associated with cellphone use.

EWG scientists say that more research is needed on the health impacts of the latest generation of communication technologies, such as 5G. In the meantime, EWG’s recommendation for strict, lower exposure limits for all radiofrequency sources, especially for children.

When the FCC established its radiofrequency radiation limits, following the passage of the 1996 Telecommunications Act, relatively few Americans, and likely no children, owned and used cellphones.

Much has changed since the federal limits were set, including technology and how these devices are used. A survey completed by the nonprofit Common Sense Media in March 2020, just before the start of the Covid-19 spread in the U.S., found that 46 percent of 2- to 4-year-olds, and 67 percent of 5- to 8-year-olds, had their own mobile devices, such as a tablet or smartphone.

With remote learning, a necessity during the Covid-19 pandemic, phones, tablets and other wireless devices became a part of life for young children, tweens and teens nationwide.

“The FCC must consider the latest scientific research, which shows that radiation from these devices can affect health, especially for children,” said Uloma Uche, Ph.D., EWG environmental health science fellow and lead author of the study.

“It has been 25 years since the FCC set its limits for radiofrequency radiation. With multiple sources of radiofrequency radiation in the everyday environment, including Wi-Fi, wireless devices and cell towers, protecting children’s health from wireless radiation exposures should be a priority for the FCC,” she added.

“We have grave concerns over the outdated approach the federal government has relied on to study the health effects of cellphone radiation and set its current safety limit and advice for consumers,” said EWG President Ken Cook. “Government guidelines are a quarter-century old and were established at a time when wireless devices were not a constant feature of the lives of nearly every American, including children.”

Reviewing 5G and other aspects of wireless technology should be the focus of public health agencies, noted Cook. “It is long past time the federal government made exposure to 5G wireless devices safe. We strongly believe those exposures deserve far more investigation and scientific rigor than has been applied to date.”

“The evidence shows that children absorb more radiofrequency radiation than adults, and the developing body of a child is more vulnerable to such effects,” said Olga Naidenko, Ph.D., EWG’s vice president for science investigations and co-author of the study.

“More research on the safety and sustainability of wireless technology is essential,” added Naidenko. “Meanwhile, there are simple steps everyone can take to protect their health, such as keeping wireless devices farther from their bodies.”

There are a number of easy, precautionary steps consumers can take until the government conducts the rigorous scientific assessment the issue deserves, which should have occurred years ago.

“Based on our review of the health risks and the inadequacy of current standards to protect children, while the science evolves, it is perfectly reasonable for parents to consider minimizing or eliminating radiofrequency radiation sources at home by relying more on wired internet access, and to urge schools to take comparable steps to reduce classroom and campus exposure,” said Cook.

Other health-protective tips for consumers who want to reduce radiofrequency radiation from wireless devices include using a headset or speaker, texting instead of talking, and limiting the time children spend on smart phones.

Find all of EWG’s tips to reduce exposure to wireless radiation here.

EWG’s recommendation for limits for radiofrequency radiation exposure is its latest effort to advance the public dialogue about science-based standards that protect public health.

https://www.ewg.org/news-insights/news-release/2021/07/study-wireless-radiation-exposure-children-should-be-hundreds


Development of health-based exposure limits for radiofrequency radiation from wireless devices using a benchmark dose approach

Uche UI, Naidenko OV. Development of health-based exposure limits for radiofrequency radiation from wireless devices using a benchmark dose approach. Environ Health. 2021 Jul 17;20(1):84. doi: 10.1186/s12940-021-00768-1.

Abstract

Background  Epidemiological studies and research on laboratory animals link radiofrequency radiation (RFR) with impacts on the heart, brain, and other organs. Data from the large-scale animal studies conducted by the U.S. National Toxicology Program (NTP) and the Ramazzini Institute support the need for updated health-based guidelines for general population RFR exposure.

Objectives  The development of RFR exposure limits expressed in whole-body Specific Absorption Rate (SAR), a metric of RFR energy absorbed by biological tissues.

Methods  Using frequentist and Bayesian averaging modeling of non-neoplastic lesion incidence data from the NTP study, we calculated the benchmark doses (BMD) that elicited a 10% response above background (BMD10) and the lower confidence limits on the BMD at 10% extra risk (BMDL10). Incidence data for individual neoplasms and combined tumor incidence were modeled for 5% and 10% response above background.

Results  Cardiomyopathy and increased risk of neoplasms in male rats were the most sensitive health outcomes following RFR exposures at 900 MHz frequency with Code Division Multiple Access (CDMA) and Global System for Mobile Communications (GSM) modulations. BMDL10 for all sites cardiomyopathy in male rats following 19 weeks of exposure, calculated with Bayesian model averaging, corresponded to 0.27–0.42 W/kg whole-body SAR for CDMA and 0.20–0.29 W/kg for GSM modulation. BMDL10 for right ventricle cardiomyopathy in female rats following 2 years of exposure corresponded to 2.7–5.16 W/kg whole-body SAR for CDMA and 1.91–2.18 W/kg for GSM modulation. For multi-site tumor modeling using the multistage cancer model with a 5% extra risk, BMDL5 in male rats corresponded to 0.31 W/kg for CDMA and 0.21 W/kg for GSM modulation.

Conclusion  BMDL10 range of 0.2—0.4 W/kg for all sites cardiomyopathy in male rats was selected as a point of departure. Applying two ten-fold safety factors for interspecies and intraspecies variability, we derived a whole-body SAR limit of 2 to 4 mW/kg, an exposure level that is 20–40-fold lower than the legally permissible level of 0.08 W/kg for whole-body SAR under the current U.S. regulations. Use of an additional ten-fold children’s health safety factor points to a whole-body SAR limit of 0.2–0.4 mW/kg for young children.

==

Related Posts:  

Study: Wireless radiation exposure for children should be hundreds of times lower than federal limits (based on NTP study)

ICNIRP’s Exposure Guidelines for Radio Frequency Fields 

Worldwide Radio Frequency Radiation Exposure Limits versus Health Effects


Friday, January 13, 2023

"Electromagnetic Fields of Wireless Communications: Biological and Health Effects"


Panagopoulos DJ (Ed.). (2022). Electromagnetic Fields of Wireless Communications: Biological and Health Effects (1st ed.). CRC Press. doi: 10.1201/9781003201052

https://www.routledge.com/Electromagnetic-Fields-of-Wireless-Communications-Biological-and-Health/Panagopoulos/p/book/9781032061757


This 544-page book reflects contributions from experts in biological and health effects of Radio Frequency (RF)/Microwave and Extremely Low Frequency (ELF) Electromagnetic Fields (EMFs) used in wireless communications (WC) and other technological applications. Diverse topics related to physics, biology, pathology, epidemiology, and plausible biophysical and biochemical mechanisms of WC EMFs emitted by antennas and devices are included. 

Discussions on the possible consequences of fifth generation (5G) mobile telephony (MT) EMFs based on available data and correlation between anthropogenic EMF exposures and various pathological conditions such as infertility, cancer, electro-hypersensitivity, organic and viral diseases, and effects on animals, plants, trees, and environment are included. It further illustrates individual and public health protection and the setting of biologically- and epidemiologically-based exposure limits.

Features:

  • Covers biological and health effects, including oxidative stress, DNA damage, reproductive effects of mobile phones/antennas (2G, 3G, 4G), cordless phones, Wi-Fi, etc.
  • Describes effects induced by real-life exposures by commercially available devices/antennas.
  • Illustrates biophysical and biochemical mechanisms that fill the gap between recorded experimental and epidemiological findings and their explanations.
  • Explores experimental and epidemiological facts and mechanisms of action. Provides explanations and protection tips.
  • Transcends across physical, biological, chemical, health, epidemiological, and environmental aspects of the topic.

Table of Contents and Chapter Abstracts

A. Physical properties of Wireless Communication Electromagnetic Fields

Chapter 1: Defining Wireless Communication (WC) Electromagnetic Fields (EMFs):

A. Polarization is a principal property of all man-made EMFs.
B. Modulation, Pulsation, and Variability are inherent parameters of WC EMFs.
C. Most man-made EMF-exposures are Non-Thermal.
D. Measuring incident EMFs is more relevant than SAR.
E. All man-made EMFs emit continuous waves, not photons.
F. Differences from natural EMFs. Interaction with matter

Panagopoulos DJ, Karabarbounis A, and Lioliousis C

ABSTRACT
All types of man-made electromagnetic fields (EMFs) and corresponding non-ionizing electromagnetic radiation (EMR) produced by electric/electronic circuits and antennas – in contrast to natural EMFs/EMR – are totally polarized and coherent. Polarized/coherent EMFs/waves can produce constructive interference and amplify their intensities at certain locations. Moreover, they induce parallel/coherent forced oscillations of charged/polar molecules – especially mobile ions – in living cells/tissues, which can trigger biological effects. The most bioactive man-made EMFs are those employed in wireless communications (WC). They are usually referred to simply as Radio Frequency (RF) or Microwave (MW) EMFs/EMR because they emit carrier signals in the RF/MW band. Yet, WC EMFs contain emissions in the Extremely Low Frequency (ELF), Ultra Low Frequency (ULF), and Very Low Frequency (VLF) bands as well in the form of modulation, pulsing, and variability. This complexity and variability of WC EMFs, combined with polarization, is what makes them even more bioactive. Man-made EMFs (including WC) at environmentally existing intensities do not induce significant heating in living tissues. The Specific Absorption Rate (SAR) was introduced by health agencies as the principal metric for the bioactivity of RF/microwave EMFs. Estimation of SAR from tissue conductivity is inaccurate, and estimation from tissue specific heat is possible only for thermal effects. Thus, SAR is of little relevance, and EMF exposures should better be defined by their incident radiation/field intensity at the included frequency bands, exposure duration, and other field parameters. The present chapter also explains that man-made EMFs/EMR, in contrast to light and ionizing electromagnetic emissions, do not consist of photons but of continuous “classical” waves and, thus, do not obey Planck’s formula connecting photon energy (ϵ) with frequency (ν), ϵ = h ν. Apart from polarization, man-made EMFs differ from natural EMFs in frequency bands and emission sources. Basic concepts of interaction with living tissue are discussed.

B. Biological and Health effects of Wireless Communication Electromagnetic Fields

Chapter 2: Public Health implications of exposure to Wireless Communication Electromagnetic Fields
Miller AB

ABSTRACT
Anthropogenic electromagnetic fields (EMFs) and corresponding electromagnetic radiation (EMR) exposure has long been a concern for the public, policy makers, and health researchers. Beginning with radar during World War II, human exposure to Radio Frequency (RF) radiation, and to modulated RF wireless communication (WC) EMFs/EMR has grown substantially over time. In 2011, a working group of the International Agency for Research on Cancer (IARC) reviewed the published literature and categorized WC EMR, termed as RF radiation, as a “possible” (Group 2B) human carcinogen. A broad range of adverse human health effects associated with WC EMFs/EMR have been reported since the IARC review. In addition, two large-scale carcinogenicity studies in rodents exposed to levels of WC EMR that mimic lifetime human exposures have shown significantly increased rates of Schwannomas and malignant gliomas, as well as chromosomal DNA damage. Of particular concern are the effects of WC EMR exposure on the developing brain in children. Compared with an adult male, a mobile phone held against the head of a child exposes deeper brain structures to greater radiation doses per unit volume, and the young, thin skull’s bone marrow absorbs a roughly tenfold higher local dose. Experimental and observational studies also suggest that men who keep mobile phones in their trouser pockets have significantly lower sperm counts and signifcantly impaired sperm motility and morphology, including mitochondrial DNA damage as well as an increased risk of colon cancer. Pending an updated IARC working group review, current knowledge provides justification for governments, public health authorities, and physicians/allied health professionals to warn the population that having a cell phone next to the body is harmful, and to support measures to reduce all exposures to WC EMFs/EMR to as low as reasonably achievable.

Chapter 3: Oxidative Stress induced by Wireless Communication Electromagnetic Fields
Yakymenko I and Tsybulin O

ABSTRACT
This chapter describes experimental data on oxidative effects induced by man-made electromagnetic fields (EMFs) and corresponding electromagnetic radiation (EMR) in living cells. Analysis of the currently available peer-reviewed scientific literature reveals important molecular effects induced by non-thermal exposures to man-made EMFs, especially wireless communication (WC) EMFs, in living cells. They include significant activation of key cellular pathways generating oxidative stress (OS) by reactive oxygen species (ROS), activation of peroxidation, oxidative damage of DNA, and changes in activities of antioxidant enzymes. Critically important features of man-made EMFs, compared to natural EMFs, are their totally polarized and coherent character and, in the case of WC EMFs, combined frequency bands and sophisticated modulation. These features provide these types of EMFs/EMR with the unique and unexpected capacity of inducing biological effects such as pronounced oxidative effects in exposed living cells. It is indicative that among 131 analyzed peer-reviewed studies dealing with oxidative effects of non-thermal Radio Frequency (RF) EMFs, mostly pulsed/modulated by Extremely Low Frequencies (ELF), 124 (95%) confirmed statistically significant oxidative effects on various types of biological systems. And among 39 analyzed studies on oxidative effects of purely ELF EMFs, 36 of them (92%) also revealed significant oxidative effects of the exposure. The wide pathogenic potential of induced ROS and their involvement in cell signaling explains a range of biological/health effects of non-thermal man-made EMF exposures, which includes both carcinogenic and non-carcinogenic pathologies. In conclusion, our analysis demonstrates that a) man-made EMFs, and especially those employed in WC combining both RF and ELF components, is a pronounced oxidative agent for living cells with high pathogenic potential; and b) the OS induced by man-made EMF exposures should be recognized as one of the primary mechanisms of biological activity of this new environmental agent.

Chapter 4: Genotoxic Effects of Wireless Communication Electromagnetic Fields
Jagetia GC

ABSTRACT
The tremendous development of wireless communications (WC) technology during the past 30 years has transformed telecommunications and popularized mobile phones so much that, today, their number exceeds the global population. In addition to electromagnetic fields (EMFs) and corresponding electromagnetic radiation (EMR) from natural sources like sun, cosmos, atmospheric discharges, etc., humans are exposed to man-made EMFs/EMR, especially at the Extremely Low Frequency (ELF) and the Radio Frequency (RF)/microwave bands. EMFs/EMR emitted by WC devices, such as mobile phones and corresponding antennas, contain RF carrier signals which are pulsed and modulated by ELF signals. We call these complex emissions WC EMFs. WC EMFs have generated great concern in the scientific community and the public, as they have been reported to cause headache, fatigue, tinnitus (microwave hearing), concentration problems, depression, memory loss, sleep, and hormonal disorders as short-term effects and even infertility and cancer as the long-term effects. This chapter has been written after collecting information from various search engines, including Google Scholar, PubMed, SciFinder, Science Direct, and other websites on the internet. The chapter focuses on the genotoxic cellular effects of WC EMFs on cultured cells, humans, and animals. Since WC EMFs combine both RF and ELF, in this chapter, both RF/WC and purely ELF man-made EMF studies are reviewed. Most studies conducted on the genotoxic effects of ELF or RF/WC EMFs have resulted in positive findings. Many human and animal studies have demonstrated that ELF or RF/ WC man-made EMFs increased the frequency of micronuclei and induced chromosome aberrations or DNA damage, including single- and double-strand breaks. It has also been demonstrated that these EMFs trigger reactive oxygen species (ROS) formation, and changes in gene expression, particularly in genes involved in signal transduction, cytoskeleton formation, and cellular metabolism

Chapter 5: DNA and Chromosome Damage in human and animal cells, induced by Mobile Telephony EMFs and other stressors
Panagopoulos DJ

ABSTRACT
Induction of DNA fragmentation in fruit fy ovarian cells after in vivo exposure and chromatid type aberrations in human peripheral blood lymphocytes (HPBLs) after in vitro exposure to mobile telephony (MT) electromagnetic fields (EMFs) from mobile phones are presented. In both cases, the biological samples were exposed in close distance to a commercially available second or third/ fourth generation (2G or 3G/4G) mobile phone handset during an active phone call in “talk” mode. The DNA fragmentation in fruit fy ovarian cells induced by 2G MT EMFs was compared with that induced by 50 Hz magnetic fields (MFs) similar to or much stronger than those of high-voltage power lines or a pulsed electric field (PEF) of similar characteristics with EMFs of atmospheric discharges (lightning) under identical conditions and experimental procedures. Respectively, the degree of chromosomal damage induced by in vitro exposure of HPBLs to 3G/4G MT EMF was compared to that induced by a high caffeine dose (~ 290 times above the permissible single dose for an adult human) administered to blood samples of the same subjects under identical conditions and experimental procedures. In the first case, it was shown that MT EMFs are much more damaging than high-voltage power line MFs or the PEF and more damaging than previous other stressors tested on the same biological system, such as certain cytotoxic chemicals, starvation, and dehydration. In the second case, it was shown that MT EMFs are similar and even more damaging than the above extreme caffeine dose. The combination of this caffeine dose and the 3G/4G MT EMF exposure increased dramatically the number of aberrations in the blood samples of all subjects, suggesting that MT EMF exposure may be significantly more dangerous when combined with other stressors. The above findings allow useful conclusions regarding EMF bioactivity, cell sensitivity, and relevant EMF exposure limits.

Chapter 6: The impacts of Wireless Communication Electromagnetic Fields on human reproductive biology
Miller K, Harrison K, Martin JH, Nixon B, and De Iuliis GN

ABSTRACT
The domain of reproductive biology underpins our understanding of human fertility and forms an important part of the debate on the safety of wireless communication (WC) electromagnetic fields (EMFs). While studies on the effects of anthropogenic EMFs on reproduction are of clear importance, recent evidence suggests that such studies are well placed to provide much-anticipated mechanistic insights on the health impacts of EMFs. Resolution of the biophysical mechanism(s) of action is one of the most important keys required to unlock scientific progression and enable accurate assessment of health risk. Growing recourse to assisted reproductive technologies (ART) across developed nations has justifiably given rise to concern about our decreasing collective fertility as a species. While this issue is certainly multi-factorial, the rise of anthropogenic EMF exposures and especially those of WC technology has aligned with a simultaneous global decline in male semen quality parameters. This well recognized link to reproductive health clearly underlines the unique sensitivity of our reproductive systems to environmental change and has prompted investigation of the impact of novel environmental insults such as WC EMFs. The current picture of how WC EMFs impact reproduction is not yet completely clear, but the field offers strong evidence of negative impacts on the cells, tissues, and processes that influence fertility. Accordingly, here we summarize the highest quality evidence outlining effects of WC EMFs on reproductive tissues and germ cells, and based on this, we propose a plausible mechanism for the molecular nature of the interaction of WC EMF with our biology. We also highlight some of the controversies in this field, including those pertaining to policy. Against this background, we contend that, in parallel with our advancing research, revising the safety limits of anthropogenic EMF exposures to our population is warranted.

Chapter 7: Effects of Wireless Communication Electromagnetic Fields on human and animal brain activity
Mohammed HS

ABSTRACT
The wide and increasing use of telecommunication equipment has necessitated the study of its effects on biological systems and, in particular, on brain activity. Due to the electrical nature of communication between neuronal cells in the brain, the effects of anthropogenic electromagnetic fields (EMFs) and corresponding electromagnetic radiation (EMR) on the human and animal brain have become the focus of many studies. Electroencephalography (EEG) as a direct and sensitive tool for monitoring brain functional changes can be implemented to decipher these effects. Pulsation and modulation of the wireless communication (WC) electromagnetic signals at low frequencies produce complex radiation patterns with components in the Radio Frequency (RF)/microwave and the Extremely Low Frequency (ELF) bands. This mixed type of EMFs/EMR we call wireless communication EMFs/EMR (WC EMFs/EMR). Increasing experimental and theoretical evidence emphasizes the crucial role of the ELF signal pulsation/modulation in the effects of WC EMFs/EMR on human and animal EEG, even at intensities well below the officially accepted limits for human exposure. The duration of exposure is an additional important parameter for the induced effects. The vast majority of recorded effects of WC EMFs/EMR on the human/animal brain are not accompanied by any significant heating, and thus, they are categorized as non-thermal effects. This chapter highlights the concepts related to the human and animal EEG and its alterations induced by anthropogenic EMFs and especially WC EMFs/EMR. Effects on wake and sleep human and animal EEG are described. The importance of animal studies is discussed, and the need for methodological standardization in experimental studies is emphasized. Proposed mechanisms for the action of anthropogenic EMFs on brain activity are reviewed. More studies investigating the non-thermal effects of WC EMFs/EMR on the human and animal brain are needed in order to further explore the effects, the interaction mechanisms, and the consequences of anthropogenic EMFs on health and wellbeing.

Chapter 8: Electrohypersensitivity as a worldwide man-made electromagnetic pathology: a review of the medical evidence
Belpomme D and Irigaray P

ABSTRACT
Much of the controversy over the causes of electro-hypersensitivity (EHS) and multiple chemical sensitivity (MCS) lies in the absence of both recognized clinical criteria and objective biomarkers for widely accepted diagnosis. However, there are, presently, sufficient clinical, biological, and radiological data for EHS to be acknowledged as a distinctly well-defined, objectively identified, and characterized neurologic pathological disorder. Therefore, patients who self-report suffering from EHS should be diagnosed and treated on the basis of currently available biological tests and the use of suitable cerebral imaging. Because we have shown that EHS is frequently associated with MCS in EHS patients and that both those individualized clinical entities share a common pathophysiological mechanism for symptom occurrence, it appears that EHS and MCS can be identified as a unique neurologic pathological syndrome, whatever their precise causal origin is. In this review, we distinguish the etiology of EHS itself from the environmental causes that trigger symptoms and subsequent pathophysiological changes after EHS occurrence. Contrary to present scientifically unfounded claims, we indubitably refute the hypothesis of a nocebo effect to account for the genesis of EHS and its presentation in EHS self-reported patients. We also refute the erroneous concept that EHS could be reduced to a vague “functional impairment”. The hypersensitivity that characterizes EHS appears to be a persistent and most often irreversible pathological state, as is also the case for sensitivity to chemicals in MCS-bearing patients. Taking into consideration the WHO-proposed causality criteria, we argue that EHS may, in fact, be causally related to increased exposure to man-made electromagnetic fields (EMFs) and, in a limited number of cases, to marketed environmental chemicals. We, therefore, appeal to all governments and international health institutions and, more particularly, the WHO to urgently consider this growing EHS-associated pandemic plague and to acknowledge EHS as a new real disorder.

Chapter 9: Carcinogenic effects of non-thermal exposure to Wireless Communication Electromagnetic Fields
Yakymenko I and Tsybulin O

ABSTRACT
In this chapter, we discuss alarming epidemiological and experimental data on carcinogenic effects of long-term non-thermal exposure to man-made electromagnetic fields (EMFs) and corresponding electromagnetic radiation (EMR), mainly from wireless communication (WC) systems, termed as WC EMFs and WC EMR, respectively. Moreover, since all WC EMFs/EMR include Extremely Low Frequency (ELF) components in the form of pulsations and modulation, the chapter also examines corresponding data from purely ELF man-made EMFs. During the past two decades, a number of scientific reports have revealed that, under certain conditions, non-thermal exposure to WC EMFs/ EMR or modulated microwaves (MMWs) can substantially induce cancer progression in humans and animals. The carcinogenic effect of WC EMFs is typically manifested after long-term (usually ≥ 10 years) exposure, e.g., in mobile phone users. Nevertheless, even a year of operation of a powerful base station for mobile telephony (MT) reportedly resulted in a dramatic increase of cancer incidence among the population living nearby. In addition, studies in rodents unveiled a significant increase in carcinogenesis after 17–24 months of MMW exposure both in tumor-prone and intact animals. Data on widely accepted molecular markers of carcinogenesis confirm that exposure to non-thermal levels of MMWs or ELF man-made EMFs can induce tumorigenesis. It is becoming increasingly evident that assessment of biological effects of man-made EMFs/EMR based solely on thermal approach used in recommendations by certain international regulatory agencies, including the International Commission on Non-Ionizing Radiation Protection (ICNIRP), requires urgent and significant re-evaluation. We conclude that available scientific data strongly point to the need for re-elaboration of the current safety limits for man-made EMF exposures. We also emphasize that the everyday exposure of the population to WC EMFs/EMR should be regulated based on the Precautionary Principle, which implies maximum restriction of the risk factor till new, more unambiguous conclusions can be drawn regarding its safety.

C. Effects on Wildlife and Environment

Chapter 10: Effects of man-made and especially Wireless Communication Electromagnetic Fields on Wild Life
Balmori A

ABSTRACT
During the past few decades, millions of mobile telephony (MT) base antennas and antennas of other types of wireless communications (WC) have been installed around the world, in cities and in nature, including protected natural areas, in addition to pre-existing antennas (e.g., for television, radio broadcasting, radars, etc.) and high-voltage power lines. Only the aesthetic aspects or urban regulations have been generally considered in this deployment by the responsible authorities, while the biological and environmental impacts of the associated electromagnetic fields (EMFs) and corresponding non-ionizing electromagnetic radiation (EMR) emissions have not been assessed so far. Therefore, the effects on animals (including humans) and plants living around the anthropogenic EMF sources have not been considered. This deficit is particularly concerning because these EMFs/EMR are very different from natural EMFs/EMR, such as light, geomagnetic and geoelectric fields, atmospheric (Schumann) oscillations, or cosmic microwaves, which not only are not dangerous at normal intensities, but, on the contrary, they are vital to the environment and to all forms of life. This chapter reviews the available research on the effects of anthropogenic and especially WC EMFs on wildlife and the natural environment, published mainly during the past 30 years. It includes studies conducted both in the nature and in the laboratory, with vertebrates (mammals, birds, fish, amphibians, and reptiles), invertebrates (mostly insects), plants, and trees. Most of these studies have shown significant detrimental effects of the anthropogenic EMFs on wildlife, at intensities comparable to the current ambient exposure levels, suggesting that we are facing a new environmental pollutant which threatens the health and existence of these species. It is worrying that, despite the accumulating evidence, the people, governments, and even nature conservation organizations are uninformed and unaware of the risks that anthropogenic, and especially WC EMFs pose to the welfare of biodiversity and ultimately to humans.

D. Biophysical and Biochemical Mechanisms of action

Chapter 11: Mechanism of Ion Forced-Oscillation and Voltage-Gated Ion Channel Dysfunction by Polarized and Coherent Electromagnetic Fields
Panagopoulos DJ

ABSTRACT
Exposure of living organisms to man-made electromagnetic fields (EMFs) causes a variety of adverse biological and health effects including oxidative stress (OS), genetic damage, cell death, and cancer, as is today documented by a great number of indisputable scientific studies. How does this happen? Key signaling molecules in all cells are the mobile ions, the concentrations of which control all cellular functions. The mobile ions move in and out of the cells through ion channels. A most important class of ion channels are the voltage-gated ion channels (VGICs) which open or close by polarized forces on the electric charges of their voltage-sensors generated by changes ≥ 30 mV in the membrane voltage. Polarization, coherence, and existence of Extremely Low Frequencies (ELFs) are common features of all man-made EMFs. Polarized and coherent oscillating EMFs force mobile ions to oscillate in parallel and in phase with them. This coordinated oscillation generates electrical forces on neighboring charges. The forces increase with increasing EMF intensity and decreasing EMF frequency. The oscillating ions close to the voltage-sensors of VGICs generate similar forces on them as those generated by 30 mV changes in the membrane voltage, causing irregular opening and closing of the VGICs. Continuance of such a dysfunction disrupts intracellular ionic concentrations, which determine the cell’s electrochemical balance and homeostasis. Impairment of this balance triggers overproduction of reactive oxygen species (ROS) in cells which create OS and can damage DNA and other critical biomolecules. Since no convincing corresponding non-thermal mechanism exists for Radio Frequency (RF) EMFs, and because all RF EMFs employed in wireless communications (WC) and other applications are necessarily combined with ELF pulsation, modulation, and random variability, it seems that all non-thermal biological effects of man-made EMFs attributed, until now, to RF EMFs are actually due to their ELF components and can be explained by this mechanism.

Chapter 12: Electromagnetic Field-induced dysfunction of Voltage-Gated Ion Channels, Oxidative Stress, DNA damage and related pathologies
Panagopoulos DJ, Yakymenko I, and Chrousos GP

ABSTRACT
A plethora of studies show that exposure of living organisms to man-made polarized and coherent electromagnetic felds (EMFs), especially in the Extremely Low Frequency (ELF) and the microwave/Radio Frequency (RF) bands, may lead to oxidative stress (OS) and DNA damage. DNA damage is associated with mutations, cell senescence, cell death, infertility, and other pathologies, including cancer. ELF EMF exposures from high-voltage power lines and complex “RF” EMF exposures from wireless communication (WC) antennas/devices have been associated with increased cancer risk. Almost all man-made microwave/RF EMFs, and especially those employed in WC, are combined with ELF components in the form of modulation, pulsation, and random variability. Thus, in addition to polarization/coherence, the existence of ELFs is a common feature of almost all man-made EMFs. Polarized/coherent ELF EMFs are predicted to induce dysfunction of voltage-gated ion channels (VGICs) in cell membranes through the ion forced oscillation mechanism, and this has been verified by many experimental studies. Dysfunction of VGICs disrupts intracellular concentrations of critical ions, such as calcium, sodium, potassium, etc. This condition initiates biochemical processes leading to OS by reactive oxygen species (ROS) overproduction. Such processes include a) increased calcium signaling, leading to nitric oxide (NO•) overproduction by the nitric oxide synthases (NOS) in various locations in the cell, and superoxide anion (O2•−) overproduction in the mitochondria; b) activation of NADPH/NADH oxidase in the plasma membrane, leading to increased production of O2•−; and c) dysfunction of the Na+/K+ pump (ATPase) in the plasma and internal cell membranes, triggering mitochondrial ROS production. At least these processes may result in excessive OS, leading to DNA damage and related diseases, including infertility and cancer. Thus, it seems that there is a plausible explanation for the genetic damage and related effects found to be induced by man-made EMF exposures as reported by many experimental and epidemiological studies.


Excerpts from the book re: 5G

"Today the massive deployment of the New Radio (NR) 5G (fifth generation) MT/WC system around the world by the telecommunications industry, which is expected to further increase considerably the existing ambient EMF levels, has already started and is rolling out, despite serious concerns expressed by scientists (Miller et al. 2018; 2019; Hardell and Nyberg 2020; Kostoff et al. 2020; Levitt et al. 2021)." 

"Recently, because of the highest microwave carrier frequencies (“mm-waves”) of the 5G, certain Russian studies reporting “non-thermal effects of microwave/mm-wave EMFs” came to light. These studies were written in Russian and became known mostly from reviews in English by other Russian scientists. Three such reviews are by Pakhomov et al. (1998), Betskii and Lebedeva (2004), and Belyaev (2005)." 

"At the same time, the massive deployment of the 5G MT/WC system in order to achieve ever increasing data transmission rates and the so-called Internet of Things (IoT) is well underway despite serious concerns expressed by many expert scientists who have asked for a moratorium in 5G deployment (Hardell and Nyberg 2020), as implied by the Precautionary Principle (Harremoes 2013; Read and O'Riordan 2017; Frank 2021). Indeed, the deployment of 5G will require a huge increase in the number of base antennas, combined with potential increases in transmission power/ intensity, and thousands of satellites in the atmosphere to complement the base antennas. Moreover, the increased amount of variable data transmitted by this new WC EMR type make it even more variable in intensity, waveform, frequency, etc., with inclusion of ever more variable ELF pulsations than previous types of MT/WC EMFs (Rappaport et al. 2013; Dahlman et al. 2018). Thus, 5G is expected to significantly increase public exposure and consequent health problems (Panagopoulos 2019; Hardell and Nyberg 2020; Kostoff et al. 2020; Levitt et al. 2021). 

"Strangely, in 2020, the ICNIRP increased the general public exposure limit for WC EMFs (2–6 GHz) averaged over 6 minutes (min) from 1000 to 4000 μW/cm2 (from 1 to 4 mW/cm2) instead of decreasing it (ICNIRP 1998; 2020). Also strange were the technical reports and papers referring to the characteristics of 5G that do not provide any information on the ULF/ELF/VLF components of this new WC EMF type, as if their authors are not aware of their existence (EPRS 2020; 2021; Karipidis et al. 2021). As already mentioned, carrying out studies involving WC EMF exposures without searching the low-frequency components and attributing any observed effects to the RF/ MW carrier can be very misleading. Similarly, reviewing and evaluating other studies by looking only at the RF/MW part of their EMF exposures and ignoring the low-frequency part or not examining whether the exposures are from real-life WC devices/antennas or simulated signals with fxed parameters and, thus, significantly less bioactive, as in EPRS (2020; 2021) (EPRS: European Parliamentary Research Service) and Karipidis et al. (2021), is a flawed methodology. Thus, not only are WC EMFs dangerous to life, but the evaluation of their risks by certain reviews and organizations is flawed as well. In view of the fact that the ULF/ELF/VLF EMFs are actually the most bioactive, the low frequency (ULF/ELF/VLF) pulsations of the most recent generations of WC signals such as the 4G and 5G should be in the forefront of bioelectromagnetic research in order to allow the correct evaluation of their risks." 

"The International Commission for Non-Ionizing Radiation Protection (ICNIRP) is a private, non-governmental organization (NGO) that sets EMF exposure standards and claims that the only biological effects induced by EMFs are those due to tissue heating (thermal effects) in the case of RF EMFs, and denies any non-thermal effects (ICNIRP 1998; 2020; Hardell and Carlberg 2021). Facts show that only RF exposures with frequencies at the GHz range or higher and intensities greater than 0.1 mW/cm2 may induce tissue heating, usually of the order of 0.1–0.3°C, and, thus, the vast majority of EMF exposures at environmentally existing intensities, mainly due to ELF EMFs alone or combined with RF, are non-thermal (Panagopoulos et al. 2013b). Yet, the thermal effects are expected to become more significant with the higher frequencies of 5G (up to 100 GHz) (Neufeld and Kuster 2018). Even though ICNIRP accepts (only) the thermal effects of RF EMFs, it has recently increased the average 6-minute (min) exposure limit for 2–6 GHz from 1 mW/cm2 to 4 mW/cm2 (ICNIRP 2020). Thus, not even thermal effects are prevented by the ICNIRP limits anymore."

"In the 5G or New Radio (NR) system which is being deployed, the carrier frequencies are extending up to 80–100 GHz with two basic frequency ranges: 1) existing MT bands ≤6 GHz, and 2) 24.25–52.6 GHz with a tendency to increase. Moreover, 5G uses new technologies such as Multiple-Input Multiple-Output (MIMO) for multi-stream transmission and high data rates, and adaptive beam-forming by use of antenna arrays (which can be used to amplify beam intensity – see Section 1.2.4 equations 1.23, 1.24). The 100 Hz and 1000 Hz pulsations (frame, subframe) are retained, and there are synchronization and reference pulsations at ~ 6–200 Hz called Synchronization Signal Blocks (SSB) (Rappaport et al. 2013; Dahlman et al. 2018)."

"5G MT employs higher MW carrier frequencies (called mm-waves) in order to accomplish higher quality of simulations (data transfer). But with higher frequencies, the heating of exposed living tissues increases (Eq. 1.31), while penetration through different materials (e.g., air, buildings, etc.) decreases (Eq. 1.2). In order to overcome the low penetration, the number of antennas must be significantly increased, and the intensity of the emissions as well. Under such conditions, thermal effects in exposed humans cannot be excluded in addition to the already existing non-thermal effects. Studies have theoretically predicted the induction of significant thermal effects (Neufeld and Kuster 2018; Thielens et al. 2018; 2020). These facts further justify the concerns expressed by the scientific community against the installation of 5G (Hardell and Nyberg 2020; Kostoff et al. 2020; Panagopoulos 2020)."

"In a recent review of studies of the European Parliamentary Research Service (EPRS 2021)(authored by Thielens and reviewed by Vacha and Vian) regarding environmental impacts of 5G, there is no mention of pulsations or any other ELF components, and the only examined frequency band of the radiation is the carrier (MW) frequency. Moreover, the importance of the inherent variability of the real WC exposures in inducing biological/health effects is not even mentioned, and studies are criticized for having used real-life emissions from mobile phones for the exposures, which, as explained, is the only realistic exposure method (Panagopoulos et al. 2015b; 2016; Panagopoulos 2017; 2019a; Leach et al. 2018; Kostoff et al. 2020). Thus, the most important parameters of WC EMFs (low frequency components, variability) were completely ignored...."

"Another recent review of 107 experimental and 31 epidemiological studies with “RF” EMFs above 6 GHz (in order to assess bioactivity of 5G) by members of the Australian Radiation Protection and Nuclear Safety Agency again makes no mention of pulsations or any other ELF components in the 5G or in the examined studies, and no mention whether there is any similarity of the signals produced by generators in the studies with those of the 5G apart from the carrier frequency. Although most of the reviewed studies had reported genotoxic and various other effects, the authors of the review found “no confirmed evidence” of adverse effects on human health and criticized the studies for not being “independently replicated” and for employing “low quality methods of exposure assessment and control” (Karipidis et al. 2021). The same authors also made a “meta-analysis” of the same 107 experimental studies and found that the studies “do not confirm an association between low-level mm-waves and biological effects” (Wood et al. 2021). They also estimated the “effect size” (an arbitrary measure of bioactivity) among studies that reported “continuous wave” and “modulated” “RF” EMFs and found “non-significant difference”. But the “effect size” of the studies reporting modulation was found to be almost double (4.3 ± 1.6) than that of the studies reporting “continuous wave” (2.2 ± 0.6), and it is strange how this difference was reported as “nonsignificant”. Moreover, as explained in the present chapter and in Panagopoulos (2021), it is unlikely that any MW generator does not contain on/off pulsations, even only for energy-saving reasons, as in radars. Even the onset and removal of an EMF exposure alone may produce the greatest effects (Goodman et al. 1995)."

"Novel 5G technology is being rolled out in several densely populated cities, although potential chronic health or environmental impacts have not been evaluated and are not being followed. Higher carrier frequencies (shorter wavelength) associated with 5G do not penetrate the body as deeply as frequencies from older technologies, but the low frequency pulsations do. Moreover, the effects may be systemic (at whole organism level) (Beltzalel et al. 2018; Russell 2018). The range and magnitude of potential impacts of 5G technologies are under-researched, although important biological outcomes have been reported with millimeter wavelength exposure. These include oxidative stress and altered gene expression, effects on skin, and systemic effects such as on immune function (Szmigielski 2013; Yakymenko et al. 2016; Russell, 2018). In vivo studies reporting resonance with human sweat ducts (Beltzalel et al. 2018), acceleration of bacterial and viral replication, and other endpoints indicate the potential for novel as well as more commonly recognized biological impacts of this range of frequencies and highlight the need for research before population-wide continuous exposures. While information on the carrier frequencies of 5G technology are available in the related technical literature, there is no information regarding the lower frequency components (pulsations, modulations) of this new type of WC EMFs/EMR."

"Even if the risk of WC EMR per individual is low, WC EMR is now widely distributed and could become a major public health problem, especially if the planned introduction of 5G proceeds. If 5G is rolled out, we can expect to see an increase in all of the conditions associated with exposure to WC EMR. A moratorium on the roll-out of 5G is essential."

"The 5G system involves even higher carrier frequencies (up to 100 GHz) in order to be able to transmit higher amounts of data per second, and a much denser network of base antennas of potentially increased power and directional beams in order to compensate for the energy scattering loss due to the higher carrier frequency (Sauter 2011; Sesia et al. 2011; Neufeld and Kuster 2018; Agiwal and Jin 2018; Dahlman et al. 2018). A part of the scientific community, including most of those who are experts in the biological and health effects of WC EMFs, has expressed strong objections to 5G installation with concerns of highly increased health risk (McClelland and Jaboin 2018; Miller et al. 2018; 2019; Panagopoulos 2019a; 2019b; Hardell and Nyberg 2020; Hardell and Carlberg 2020; Kostoff et al. 2020)."

"Given the unique exteriorization from the human body, the temperature of the testis is 2°C–3°C lower than rectal temperature, with 35°C considered optimal for spermatogenesis (Saikhun et al. 1998). A review of 5G WC-related EMF studies and expected health effects has highlighted that there is an essential need for more research into local heat impacts on body surfaces, such as the skin and eyes, with improvement to study design necessary for safety assessment (Simkó and Mattsson 2019). The attention to exposed surface area (and not volume) requires further consideration because of the very shallow penetration depth of 5G and millimeter wave* (mmW) carrier frequencies. Although such frequencies have a very shallow penetration depth, contrastingly, associated ELFs (due to pulsation and modulation of the WC EMFs) have considerable tissue penetration depth, calling attention to the accountability of both surface area and volume. Investigation into whether there are any plausible health-related effects associated with the skin is under way (Karipidis et al. 2021) and, while requiring careful corroboration in the scientific community, pronounces the further significance for the potentially vulnerable exteriorized human testes (Miller and Torday 2019). Discussion concerning non-thermal modes of action in human reproductive systems, which constitute the vast majority of recorded effects, is the feature in this chapter and is addressed below; however, possible micro-thermal impacts are clearly not to be neglected, as they form a key part of the debate and must be explicitly considered in any research design in this field."