Monday, March 15, 2021

Expert Report by Former U.S. Government Official Concludes High Probability Radio Frequency Radiation Causes Brain Tumors

Christopher J. Portier, Ph.D., former director of the National Center for Environmental Health at the Centers for Disease Control and Prevention (CDC) and the Agency for Toxic Substances and Disease Registry (ATSDR), and a scientific advisor for the World Health Organization (WHO), recently completed an expert report on brain tumor risk from exposure to radio frequency (RF) radiation used in cellphone technology.

After completing a comprehensive review of the scientific literature, Dr. Portier concluded:

"In my opinion, RF exposure probably causes gliomas and neuromas and, given the human, animal and experimental evidence, I assert that, to a reasonable degree of scientific certainty, the probability that RF exposure causes gliomas and neuromas is high."

In 2011, Dr. Portier was selected to represent the CDC on an expert working group convened by the WHO International Agency for Research on Cancer (IARC) to review the carcinogenicity of RF radiation. Based upon recommendations of the expert panel, the IARC declared RF radiation "possibly carcinogenic to humans" (Group 2B) and the following year issued a monograph summarizing the evidence. Because the preponderance of the peer-reviewed research published since 2011 supports the need to upgrade this classification, the IARC has prioritized a new review to be conducted by 2024.

Dr. Portier's 176-page expert report including 443 references was prepared for the plaintiffs in a major product liability lawsuitMurray et al. v Motorola, Inc. et al., filed in the Superior Court for the District of Columbia against the telecommunications industry. The report appears as Exhibit 3 in a recent filing with the Court.

Christopher J. Portier. Expert Report. Exhibit C. Murray et al. v. Motorola, Inc. et al. Superior Court for the District of Columbia. March 1, 2021. pp. 1-176.

The report can be downloaded from:

Summary Statements from the Expert Report

4.1.5 Conclusions for Gliomas (p. 51)

"The evidence on an association between cellular phone use and the risk of glioma in adults is quite strong. While there is considerable difference from study to study on ever versus never usage of cellular phones, 5 of the 6 meta-analyses in Figure 1. are positive and two are significantly positive. Once you consider latency, the meta-analyses in Figure 2 clearly demonstrate an increasing risk with increasing latency. The exposure response meta-regressions in Table 10 and Table 11 clearly indicate that risk is increasing with cumulative hours of exposure, especially in the highest exposure groups. There is a strong tendency toward gliomas appearing on the same side of the head as the phone is generally used and the temporal lobe is strongly suggested as a target. These findings do not appear to be due to chance. The cohort studies appear to show less of a risk than the case-­control studies, but one study is likely to be severely impacted by differential exposure misclassification (Frei et al., 2007) and the other (Benson et al., 2012) is likely to have a milder differential exposure misclassification. The case-control studies are possibly impacted by recall bias although that issue has been examined in a number of different evaluations. Selection bias could have been an issue for the lnterphone study, but their alternative analysis using different referent groups reduces that concern. Confounding is not an issue here. In conclusion, an association has been established between the use of cellular telephones and the risk of gliomas and chance, bias and confounding are unlikely to have driven this finding. The ecological studies are of insufficient strength and quality to fully negate the findings from the observational studies.

The data in children is insufficient to draw any conclusions."

4.2.5 Conclusions for Acoustic Neuromas (p. 72)

"The evidence on an association between cellular phone use and the risk of acoustic neuromas [ANs] in adults is strong. While there is considerable difference from study to study on ever versus never usage of cellular phones, 3 of the 4 meta-analyses in Figure 3 are above 1 although none-significantly. The meta-analyses in Figure 4 demonstrate an increased risk in the highest 2 latency groups for the case-control studies that gets slightly higher when the cohort studies are added. For latency >=5 years, the mRRs are significantly elevated for the case-control studies and the combined case-control and cohort studies. The exposure response meta-regressions in Table 19 indicates that risk is increasing with cumulative hours of exposure, especially in the highest exposure groups. This finding, however, is sensitive to the inclusion of the Hardell et al. (2013) [160] study. There is a strong tendency toward ANs appearing on the same side of the head as the phone is generally used, especially as the exposure increases. These findings do not appear to be due to chance. The cohort studies appear to show less of a risk than the case-control studies, but one study is likely to be severely impacted by differential exposure misclassification (Schuz et al. (2011) [99]) and the other (Benson et al. (2013) [102]) is likely to have a milder differential exposure misclassification. Both studies have very few cases. The case-control studies are possibly impacted by recall bias and this cannot be ruled out for the ANs. Selection bias could have been an issue for lnterphone (2010) [67], and, unlike their analysis of the glioma data, they have not looked at an alternate referent population for their analyses of AN. Confounding is not an issue here. In conclusion, an association has been established between the use of cellular telephones and the risk of ANs and chance and confounding are unlikely to have driven this finding. Potential recall bias and selection bias may still be an issue with some of these findings."

5.5. Summary and Conclusions for Laboratory Cancer Studies (p. 86-88)

"The central question to ask of animal cancer studies is "Can RF increase the incidence of tumors in laboratory animals?" The answer, with high confidence, is yes. Table 20 summarizes the findings from the chronic exposure carcinogenicity studies for RF.

For rats, the NTP (2018) [177] chronic exposure bioassay in male Sprague-Dawley rats, including in-utero exposure, is clearly positive for acoustic neuromas of the heart, malignant gliomas of the brain and pheochromocytomas of the adrenal gland. These findings are further supported by the presence of preneoplastic lesions and tissue toxicity in the heart, brain glial cells and adrenal glands. The less convincing findings in the study by Falcioni et al. (2018) [178] of heart acoustic neuromas in male Sprague-Dawley rats and a marginal increase in malignant gliomas in females provides additional support for this finding....

In conclusion, there is sufficient evidence from these laboratory studies to conclude that RF can cause tumors in experimental animals with strong findings for gliomas, heart Schwannomas and adrenal pheochromocytomas in male rats and harderian gland tumors in male mice and uterine polyps in female mice. There is also some evidence supporting liver tumors and lung tumors in male and possibly female mice."

6. Mechanisms Related to Carcinogenicity (p. 91)

"There is sufficient evidence to suggest that both oxidative stress and genotoxicity are caused by exposure to RF and that these mechanisms could be the reason why RF can induce cancer in humans."

7. Summary of Bradford Hill Evaluations (p. 109)

"RF exposure probably causes gliomas and acoustic neuromas, and given the human, animal and experimental evidence, I assert that, to a reasonable degree of scientific certainty, the probability that RF exposure causes these cancers is high."

Table 22: Summary conclusion for Hill's nine aspects of epidemiological data and related science (p. 110-111)

Final Conclusion (p. 111)

"In my opinion, RF exposure probably causes gliomas and neuromas and, given the human, animal and experimental evidence, I assert that, to a reasonable degree of scientific certainty, the probability that RF exposure causes gliomas and neuromas is high."


Christopher J. Portier: Curriculum Vita and Biosketches

Current curriculum vita: see Expert Report, pp. 146-175

International Agency for Research on Cancer (WHO):

Saturday, March 13, 2021

Cell Tower Health Effects

Federal regulations protect the public only from the thermal (i.e., heating) risk due to short-term exposure to high intensity, cell tower radiation. The Federal radio frequency exposure limits ignore the hundreds of studies that have found harmful bio-effects from exposure to non-thermal levels of cell phone radiation.
The Telecommunications Act of 1996 does not allow communities to stop the siting of cell towers for environmental or health reasons as long they comply with the radio frequency exposure limits established by the Federal Communications Commission (FCC).
Localities need to organize and change the Federal law to protect public health and wildlife from exposure to microwave radiation emitted by mobile phone base stations.

As of February 6, 2021,, an industry website, reports 803,000 cell towers and 2.1 million cell antennas in the United States. Texas has the most cell towers (80,300) and California has the most cell antennas (151,000). We cannot verify the accuracy of these data because the FCC only collects data on certain types of cell towers. 

Following are some resources regarding the health effects of exposure to cell tower radiation.
Related posts

What is the radiation before 5G? A correlation study between measurements in situ and in real time and epidemiological indicators in Vallecas, Madrid

Isabel López, Nazario Félix, Marco Rivera, Adrián Alonso, Ceferino Maestú. What is the radiation before 5G? A correlation study between measurements in situ and in real time and epidemiological indicators in Vallecas, Madrid. Environ Res. 2021 Mar;194:110734. doi: 10.1016/j.envres.2021.110734.


Background: Exposure of the general population to electromagnetic radiation emitted by mobile phone base stations is one of the greater concerns of residents affected by the proximity of these structures due to the possible relationship between radiated levels and health indicators.

Objectives: This study aimed to find a possible relationship between some health indicators and electromagnetic radiation measurements.

Methods: A total of 268 surveys, own design, were completed by residents of a Madrid neighborhood surrounded by nine telephone antennas, and 105 measurements of electromagnetic radiation were taken with a spectrum analyzer and an isotropic antenna, in situ and in real-time, both outside and inside the houses.

Results: It was shown statistically significant p-values in headaches presence (p = 0.010), nightmares (p = 0.001), headache intensity (p < 0.001), dizziness frequency (p = 0.011), instability episodes frequency (p = 0.026), number of hours that one person sleeps per day (p < 0.001) and three of nine parameters studied from tiredness. Concerning cancer, there are 5.6% of cancer cases in the study population, a percentage 10 times higher than that of the total Spanish population.

Discussion: People who are exposed to higher radiation values present more severe headaches, dizziness and nightmares. Moreover, they sleep fewer hours.



• People who are exposed to higher radiation values present more severe headaches, dizziness and nightmares.
• The methodology for obtaining electromagnetic radiation measurements should be reviewed.
• The population continues to receive radiation peaks in distances greater than 200 meters, no one is free from exposure.


In conclusion, the data obtained shows that there is a relationship between the power density of radiation that a person receives at home every day and the presence of headaches, as well as the presence of sleep disorders. People who receive higher doses of radiation sleep less hours and have nightmares at night. In addition, these people suffer from headaches with greater intensity and are more prone to dizziness. In this study, indicators like fainting episodes, presence of tachycardias or instability cannot be related. No conclusive results were found for fatigue, since, out of nine parameters studied, only a statistically significant relationship was found in three of them. The study of how electromagnetic fields affect health, should not only be done in relation to cancer, but also health indicators related to day to day. The methodology for obtaining electromagnetic radiation measurements should be reviewed, the averaged radiation measurements that are described in the CENELEC standard are not the most appropriate, they should be carried out in a narrow band and with maximum peak measurements.

The measured intensity depends fundamentally on the direction of the fundamental radiation beam and not so much on the distance to the antenna. In the beam direction, differences are found in the presence of pathologies with respect to distances, when these are greater than 200 meters. Even at this distance, the population continues to receive radiation peaks, so that no one is free from exposure to these radiation sources.

The need for this study is related to the situation before 5G in terms of electromagnetic radiation rates. This study may be compared with the new radiant procedures that will be adopted in a short time.
Research on Cell Tower Radiation
and Children and Adolescents’ Health

May 31, 2019

The following seven studies were found in a search of the EMF-Portal database for mobile phone base station (i.e., cell towers) and children or adolescents. For additional studies of cell tower health effects see

Summary of Results

Meo et al (2019): Higher exposure to cell tower RFR was associated with delayed fine and gross motor skills, spatial working memory, and attention among adolescents compared to students exposed to lower levels of cell tower RFR. (13-16 years of age)

Durusoy et al (2017): An association was found between mobile phone use and headache, concentration difficulties, fatigue, sleep disturbances and warming of the ear showing a dose-response. Limited associations were found between vicinity to cell towers and some general symptoms; however, no association was found with school RFR levels. (high school students)

Schoeni et al (2016): In the cohort approach, an association was found between modelled RFR exposure from fixed site transmitters and tiredness and concentration difficulties in adolescents. (12-17 years of age)

Guxens et al (2016): Higher residential RFR exposure from cell towers and presence of indoor sources was associated with improved inhibitory control and cognitive flexibility whereas higher personal cordless phone use was associated with reduced inhibitory control and cognitive flexibility. Higher residential cell tower exposure was associated with reduced visuomotor coordination whereas improved visuomotor coordination was associated with residential indoor sources of RFR and higher personal cell phone use. (5-6 years of age)

Calvente et al (2016): Children living in higher RFR exposure areas had lower verbal expression and comprehension scores and more internalizing and total problems, and were more likely to have obsessive-compulsive and post-traumatic stress disorders, in comparison to those living in areas with lower RFR exposure. These associations were stronger when maximum RFR exposures were examined as opposed to average exposures. (9-11 years of age)

Meo et al (2015): Students exposed to higher cell tower RFR had a significantly greater risk of type 2 diabetes mellitus (p = 0.016) relative to others exposed to lower cell tower RFR. High cell tower RFR was associated with elevated levels of HbA1c and risk of type 2 diabetes mellitus. (12-17 years of age)

Huss et al (2015): Children exposed to higher levels of cell tower RFR had worse sleep duration but fewer sleep disruptions. (7 years of age)

The abstracts for these seven studies:

The above summary was prepared for the following news story:

Could A New Cell Tower Hurt You Financially? CBS13 Investigates
A new cell tower could put a local preschool out of business. 
Julie Watts, CBS Sacramento, June 27-28, 2019 and CBS San Francisco, July 6-7, 2019
 09:26 video


Mar 10, 2019

Impact of radiofrequency radiation on DNA damage and antioxidants in peripheral blood lymphocytes of humans residing near cell towers

Zothansiama, Zosangzuali M, Lalramdinpuii M, Jagetia GC. Impact of radiofrequency radiation on DNA damage and antioxidants in peripheral blood lymphocytes of humans residing in the vicinity of mobile phone base stations. Electromagn Biol Med. 2017 Aug 4:1-11. doi: 10.1080/15368378.2017.1350584.


Radiofrequency radiations (RFRs) emitted by mobile phone base stations have raised concerns on its adverse impact on humans residing in the vicinity of mobile phone base stations. Therefore, the present study was envisaged to evaluate the effect of RFR on the DNA damage and antioxidant status in cultured human peripheral blood lymphocytes (HPBLs) of individuals residing in the vicinity of mobile phone base stations and comparing it with healthy controls.

The study groups were matched on various demographic data including age, gender, dietary pattern, smoking habit, alcohol consumption, duration of mobile phone use and average daily mobile phone use.

The RF power density of the exposed individuals was significantly higher (p < 0.0001) when compared to the control group. The HPBLs were cultured and the DNA damage was assessed by cytokinesis blocked micronucleus (MN) assay in the binucleate lymphocytes. The analyses of data from the exposed group (n = 40), residing within a perimeter of 80 meters of mobile base stations, showed significantly (p < 0.0001) higher frequency of micronuclei (MN) when compared to the control group, residing 300 meters away from the mobile base station/s.

The analysis of various antioxidants in the plasma of exposed individuals revealed a significant attrition in glutathione (GSH) concentration (p < 0.01), activities of catalase (CAT) (p < 0.001) and superoxide dismutase (SOD) (p < 0.001) and rise in lipid peroxidation (LOO) when compared to controls. Multiple linear regression analyses revealed a significant association among reduced GSH concentration (p < 0.05), CAT (p < 0.001) and SOD (p < 0.001) activities and elevated MN frequency (p < 0.001) and LOO (p < 0.001) with increasing RF power density.

My note

All of the recorded RFR power density values in this study were well below the Federal Communication Commission’s maximum permissible exposure limits in the U.S. for the general population. These limits are are 6,000 mW/m2 [milliwatts per square meter] for 900 MHz and 10,000 mW/m2 for 1800 MHz radiofrequency radiation. In contrast, the highest recorded value in this study was 7.52 mW/m2 of RFR. The “exposed individuals” who resided within 80 meters of a cell antenna received an average of 5.00 mW/m2 of RFR in their bedrooms.


RFR may change the fidelity of DNA as the increased incidence of cancer has been reported among those residing near mobile phone base stations (Abdel-Rassonl et al., 2007; Bortkiewicz et al., 2004; Cherry, 2000; Eger et al., 2004; Hardell et al., 1999; Hutter et al., 2006; Wolf and Wolf, 2004). RFR emitted frommobile base stations is also reported to increase the DNA strand breaks in lymphocytes of mobile phone users and individuals residing in the vicinity of a mobile base station/s (Gandhi and Anita, 2005; Gandhi et al., 2014). Exposure of human fibroblasts and rat granulosa cells to RFR (1800 MHz, SAR 1.2 or 2 W/kg) has been reported to induce DNA single- and double-strands breaks (Diem et al., 2005). Irreversible DNA damage was also reported in cultured human lens epithelial cells exposed to microwave generated by mobile phones (Sun et al., 2006). The adverse health effects of RFR are still debatable as many studies indicated above have found a positive correlation between the DNA damage and RFR exposure; however, several studies reported no significant effect of RFR on DNA strand breaks and micronuclei formation in different study systems (Li et al., 2001; Tice et al., 2002; McNamee et al., 2003;Maes et al., 2006). The potential genotoxicity of RFR emitted by mobile phone base stations can be determined by micronucleus (MN) assay, which is an effective tool to evaluate the genotoxic or clastogenic effects of physical and chemical agents. This technique has also been used to quantify the frequencies of radiation-induced MN in human peripheral blood lymphocytes (HPBLs) (Fenech and Morley, 1985; Jagetia and Venkatesha, 2005; Prosser et al., 1988; Yildirim et al., 2010).

Six mobile phone base stations, operating in the frequency range of 900 MHz (N = 2) and1800MHz (N = 4), erected in the thickly populated areas of Aizawl city were selected for the present study… The power output of all the base stations is 20 W, with their primary beam emitting radiation at an angle of 20°. Power density measurements (using HF-60105V4, Germany) were carried out in the bedroom of each participant where they spent most of the time and hence have the longest constant level of electromagnetic field exposure. Power density measurement was carried out three times (morning, midday and evening), and the average was calculated for each residence around each base station. The main purpose of the measurement of power density was to ensure that RFR emission from each site did not exceed the safe public limits and to determine any difference in power density between selected households that were close to (within 80 m) and far (>300 m) from the mobile phone base stations. The safety limits for public exposure from mobile phone base stations are 0.45 W/m2 for 900 MHz and 0.92 W/m2 for 1800 MHz frequency as per Department of Telecommunications, Ministry of Communications, Government of India, New Delhi guidelines (DoT, 2012).

… some residences are located horizontally with the top of the towers from which RFR are emitted, making it possible to get an exposure at a short distance of 1–20 m, despite being erected on the rooftop or in the ground. A minimum of two individuals were sampled from each household and at least five individuals were sampled around each mobile base station. Individuals sampled around each base station were matched for their age and gender (Table 1). The exposed group consisted of 40 healthy individuals who fulfilled the inclusion criteria of being above 18 years of age and residing in the vicinity of mobile phone base stations (within 80 m radius). The control group comprised of 40 healthy individuals matched for age and gender who had been living at least 300 m away from any mobile phone base stations…. Sampling was also done only from those residences who did not use microwave oven for cooking, Wifi devices and any other major source of electromagnetic field as they are known to cause adverse effects (Atasoy et al., 2013; Avendaño et al., 2012).

The groups matched for most of the demographic data such as age, gender, dietary pattern, smoking habit, alcohol consumption, mobile phone usage, duration of mobile phone use and average daily mobile phone use (Table 2). A highly significant variation (p < 0.0001) was observed for the distance of household from the base station (40.10 ± 3.02 vs. 403.17 ± 7.98 in m) between exposed and control groups.

The RF power density of the exposed group (2.80–7.52 mW/m2; average 5.002 ± 0.182 mW/ m2) was significantly higher (p < 0.0001) when compared to the control group (0.014–0.065 mW/m2; average 0.035 ± 0.002 mW/m2). The highest power density was recorded at a distance of 1–20 m (6.44 ± 0.31 mW/m2), which is significantly higher (p < 0.0001) than those at a distance of 21–40 m (4.79 ± 0.33), 41–60 m (4.48 ± 0.22) and 61–80 m (4.61 ± 0.10).

The highest measured power density was 7.52mW/m2. Most of the measured values close to base stations (Table 1) are higher than that of the safe limits recommended by Bioinitiative Report 2012 (0.5mW/m2), Salzburg resolution 2000 (1 mW/m2) and EU (STOA) 2001 (0.1 mW/m2). However, all the recorded values were well below the current ICNIRP safe level (4700 mW/m2) and the current Indian Standard (450 mW/m2).

The exact mechanism of action of RFR in micronuclei induction and reduced antioxidant status is not apparent. The possible putative mechanism of generation of DNA damage may be the production of endogenous free radicals due to continuous exposure. RFR has been reported to produce different free radicals earlier (Avci et al., 2009; Burlaka et al., 2013; Barcal et al., 2014; Kazemi et al., 2015). Cells possess a number of compensatory mechanisms to deal with ROS and its effects. Among these are the induction of antioxidant proteins such as GSH, SOD and CAT. Enzymatic antioxidant systems function by direct or sequential removal of ROS, thereby terminating their activities. An imbalance between the oxidative forces and antioxidant defense systems causes oxidative injury, which has been implicated in various diseases, such as cancer, neurological disorders, atherosclerosis, diabetes, liver cirrhosis, asthma, hypertension and ischemia (Andreadis et al., 2003; Comhair et al., 2005; Dhalla et al., 2000; Finkel and Holbrook, 2000; Kasparova et al., 2005; Sayre et al., 2001; Sohal et al., 2002). Because of the significant decrease in endogenous antioxidants and increased LOO among the exposed group, the extra burden of free radicals is unlikely to get neutralized, and these surplus ROS may react with important cellular macromolecules including DNA forming either DNA adducts or stand breaks, which may be later expressed as micronuclei once the cell decides to divide. The decline in the antioxidant status may be also due to the suppressed activity of Nrf2 transcription factor which is involved in maintaining the antioxidant status in the cells.

The present study has reported that [radiofrequency radiation] increased the frequency of [micronuclei] and [lipid peroxidation] and reduced [glutathione] contents, [catalase] and [superoxide dismutase] activities in the plasma of the exposed individuals. The induction of [micronuclei] may be due to the increase in free-radical production. The present study demonstrated that staying near the mobile base stations and continuous use of mobile phones damage the DNA, and it may have an adverse effect in the long run. The persistence of DNA unrepaired damage leads to genomic instability which may lead to several health disorders including the induction of cancer.


Biological effects from exposure to electromagnetic radiation emitted by
cell tower base stations and other antenna arrays

Levitt BB, Lai H. Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environmental Reviews.18: 369–395 (2010) doi:10.1139 /A10-018. 


The siting of cellular phone base stations and other cellular infrastructure such as roof-mounted antenna arrays, especially in residential neighborhoods, is a contentious subject in land-use regulation. Local resistance from nearby residents and landowners is often based on fears of adverse health effects despite reassurances from telecommunications service providers that international exposure standards will be followed. 

Both anecdotal reports and some epidemiology studies have found headaches, skin rashes, sleep disturbances, depression, decreased libido, increased rates of suicide, concentration problems, dizziness, memory changes, increased risk of cancer, tremors, and other neurophysiological effects in populations near base stations. 

The objective of this paper is to review the existing studies of people living or working near cellular infrastructure and other pertinent studies that could apply to long-term, low-level radiofrequency radiation (RFR) exposures. While specific epidemiological research in this area is sparse and contradictory, and such exposures are difficult to quantify given the increasing background levels of RFR from myriad personal consumer products, some research does exist to warrant caution in infrastructure siting. Further epidemiology research that takes total ambient RFR exposures into consideration is warranted. 

Symptoms reported today may be classic microwave sickness, first described in 1978. Nonionizing electromagnetic fields are among the fastest growing forms of environmental pollution. Some extrapolations can be made from research other than epidemiology regarding biological effects from exposures at levels far below current exposure guidelines.


In lieu of building new cell towers, some municipalities are licensing public utility poles throughout urban areas for Wi-Fi antennas that allow wireless Internet access. These systems can require hundreds of antennas in close proximity to the population with some exposures at a lateral height where second- and third-story windows face antennas. Most of these systems are categorically excluded from regulation by the U.S. Federal Communications Commission (FCC) or oversight by government agencies because they operate below a certain power density threshold. However, power density is not the only factor determining biological effects from radiofrequency radiation (RFR).

An aesthetic emphasis is often the only perceived control of a municipality, particularly in countries like America where there is an overriding federal preemption that precludes taking the “environmental effects” of RFR into consideration in cell tower siting as stipulated in Section 704 of The Telecommunications Act of 1996 (USFCC 1996). Citizen resistance, however, is most often based on health concerns regarding the safety of RFR exposures to those who live near the infrastructure. Many citizens, especially those who claim to be hypersensitive to electromagnetic fields, state they would rather know where the antennas are and that hiding them greatly complicates society’s ability to monitor for safety.

Industry representatives try to reassure communities that facilities are many orders of magnitude below what is allowed for exposure by standards-setting boards and studies bear that out (Cooper et al. 2006Henderson and Bangay 2006Bornkessel et al. 2007). These include standards by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) used throughout Europe, Canada, and elsewhere (ICNIRP 1998). The standards currently adopted by the U.S. FCC, which uses a two-tiered system of recommendations put out by the National Council on Radiation Protection (NCRP) for civilian exposures (referred to as uncontrolled environments), and the International Electricians and Electronics Engineers (IEEE) for professional exposures (referred to as controlled environments) (U.S. FCC 1997). The U.S. may eventually adopt standards closer to ICNIRP. The current U.S. standards are more protective than ICNIRP’s in some frequency ranges so any harmonization toward the ICNIRP standards will make the U.S. limits more lenient.

All of the standards currently in place are based on RFRs ability to heat tissue, called thermal effects. A longstanding criticism, going back to the 1950s (Levitt 1995), is that such acute heating effects do not take potentially more subtle non-thermal effects into consideration. And based on the number of citizens who have tried to stop cell towers from being installed in their neighborhoods, laypeople in many countries do not find adherence to existing standards valid in addressing health concerns. Therefore, infrastructure siting does not have the confidence of the public (Levitt 1998).

The intensity of RFR decreases rapidly with the distance from the emitting source; therefore, exposure to RFR from transmission towers is often of low intensity depending on one’s proximity. But intensity is not the only factor. Living near a facility will involve long-duration exposures, sometimes for years, at many hours per day. People working at home or the infirm can experience low-level 24 h exposures. Nighttimes alone will create 8 hour continuous exposures. The current standards for both ICNIRP, IEEE and the NCRP (adopted by the U.S. FCC) are for whole-body exposures averaged over a short duration (minutes) and are based on results from short-term exposure studies, not for long-term, low-level exposures such as those experienced by people living or working near transmitting facilities. For such populations, these can be involuntary exposures, unlike cell phones where user choice is involved.

The U.S. FCC has issued guidelines for both power density and SARs. For power density, the U.S. guidelines are between 0.2–1.0 mW/cm2….

At 100–200 ft (about 30–60 meters) from a cell phone base station, a person can be exposed to a power density of 0.001 mW/cm2 (i.e., 1.0 μW/cm2)….

For the purposes of this paper, we will define low-intensity exposure to RFR of power density of 0.001 mW/cm

Many biological effects have been documented at very low intensities comparable to what the population experiences within 200 to 500 ft (60–150 m) of a cell tower, including effects that occurred in studies of cell cultures and animals after exposures to low-intensity RFR. Effects reported include: genetic, growth, and reproductive; increases in permeability of the blood–brain barrier; behavioral; molecular, cellular, and metabolic; and increases in cancer risk….

Ten years ago, there were only about a dozen studies reporting such low-intensity effects; currently, there are more than 60. This body of work cannot be ignored. These are important findings with implications for anyone living or working near a transmitting facility. However, again, most of the studies in the list are on short-term (minutes to hours) exposure to low-intensity RFR. Long-term exposure studies are sparse. In addition, we do not know if all of these reported effects occur in humans exposed to low-intensity RFR, or whether the reported effects are health hazards. Biological effects do not automatically mean adverse health effects, plus many biological effects are reversible. However, it is clear that low-intensity RFR is not biologically inert. Clearly, more needs to be learned before a presumption of safety can continue to be made regarding placement of antenna arrays near the population, as is the case today.

… The previously mentioned studies show that RFR can produce effects at much lower intensities after test animals are repeatedly exposed. This may have implications for people exposed to RFR from transmission towers for long periods of time.

The conclusion from this body of work is that effects of long-term exposure can be quite different from those of short-term exposure.
Since most studies with RFR are short-term exposure studies, it is not valid to use their results to set guidelines for long-term exposures, such as in populations living or working near cell phone base stations.
Numerous biological effects do occur after short-term exposures to low-intensity RFR but potential hazardous health effects from such exposures on humans are still not well established, despite increasing evidence as demonstrated throughout this paper. Unfortunately, not enough is known about biological effects from long-term exposures, especially as the effects of long-term exposure can be quite different from those of short-term exposure. It is the long-term, low-intensity exposures that are most common today and increasing significantly from myriad wireless products and services.
People are reporting symptoms near cell towers and in proximity to other RFR-generating sources including consumer products such as wireless computer routers and Wi-Fi systems that appear to be classic “microwave sickness syndrome,” also known as “radiofrequency radiation sickness.” First identified in the 1950s by Soviet medical researchers, symptoms included headache, fatigue, ocular dysfunction, dizziness, and sleep disorders. In Soviet medicine, clinical manifestations include dermographism, tumors, blood changes, reproductive and cardiovascular abnormalities, depression, irritability, and memory impairment, among others. The Soviet researchers noted that the syndrome is reversible in early stages but is considered lethal over time (Tolgskaya et al. 1973).

The present U.S. guidelines for RFR exposure are not up to date. The most recent IEEE and NCRP guidelines used by the U.S. FCC have not taken many pertinent recent studies into consideration because, they argue, the results of many of those studies have not been replicated and thus are not valid for standards setting. That is a specious argument. It implies that someone tried to replicate certain works but failed to do so, indicating the studies in question are unreliable. However, in most cases, no one has tried to exactly replicate the works at all.... In addition, effects of long-term exposure, modulation, and other propagation characteristics are not considered. Therefore, the current guidelines are questionable in protecting the public from possible harmful effects of RFR exposure and the U.S. FCC should take steps to update their regulations by taking all recent research into consideration without waiting for replication that may never come because of the scarcity of research funding. The ICNIRP standards are more lenient in key exposures to the population than current U.S. FCC regulations. The U.S. standards should not be “harmonized” toward more lenient allowances. The ICNIRP should become more protective instead. All standards should be biologically based, not dosimetry based as is the case today.
Exposure of the general population to RFR from wireless communication devices and transmission towers should be kept to a minimum and should follow the “As Low As Reasonably Achievable” (ALARA) principle. Some scientists, organizations, and local governments recommend very low exposure levels — so low, in fact, that many wireless industries claim they cannot function without many more antennas in a given area. However, a denser infrastructure may be impossible to attain because of citizen unwillingness to live in proximity to so many antennas. In general, the lowest regulatory standards currently in place aim to accomplish a maximum exposure of 0.02 V/m, equal to a power density of 0.0001 μW/cm2, which is in line with Salzburg, Austria’s indoor exposure value for GSM cell base stations. Other precautionary target levels aim for an outdoor cumulative exposure of 0.1 μW/cm2 for pulsed RF exposures where they affect the general population and an indoor exposure as low as 0.01 μW/cm2 (Sage and Carpenter 2009). In 2007, The BioInitiative Report, A rationale for a biologically based public exposure standard for electromagnetic fields (ELF and RF), also made this recommendation, based on the precautionary principle (Bioinitiative Report 2007).

Citizens and municipalities often ask for firm setbacks from towers to guarantee safety. There are many variables involved with safer tower siting — such as how many providers are co-located, at what frequencies they operate, the tower’s height, surrounding topographical characteristics, the presence of metal objects, and others. Hard and fast setbacks are difficult to recommend in all circumstances. Deployment of base stations should be kept as efficient as possible to avoid exposure of the public to unnecessary high levels of RFR. As a general guideline, cell base stations should not be located less than 1500 ft (500 m) from the population, and at a height of about 150 ft (50 m). Several of the papers previously cited indicate that symptoms lessen at that distance, despite the many variables involved. However, with new technologies now being added to cell towers such as Wi-Max networks, which add significantly more power density to the environment, setback recommendations can be a very unpredictable reassurance at best. New technology should be developed to reduce the energy required for effective wireless communication.

In addition, regular RFR monitoring of base stations should be considered….


 Epidemiological evidence for a health risk from cell towers
Khurana VG, Hardell L, Everaert J, Bortkiewicz A, Carlberg M, Ahonen M. Epidemiological evidence for a health risk from mobile phone base stations. Int J Occup Environ Health. 2010 Jul-Sep;16(3):263-7.


Human populations are increasingly exposed to microwave/radiofrequency (RF) emissions from wireless communication technology, including mobile phones and their base stations. By searching PubMed, we identified a total of 10 epidemiological studies that assessed for putative health effects of mobile phone base stations. Seven of these studies explored the association between base station proximity and neurobehavioral effects and three investigated cancer. We found that eight of the 10 studies reported increased prevalence of adverse neurobehavioral symptoms or cancer in populations living at distances < 500 meters from base stations. None of the studies reported exposure above accepted international guidelines, suggesting that current guidelines may be inadequate in protecting the health of human populations. We believe that comprehensive epidemiological studies of long-term mobile phone base station exposure are urgently required to more definitively understand its health impact.

Review Papers
Bhattacharya, R, Roy, R. Impacts of communication towers on avians: A review. IJECT. 4(1): 137- 139. 2013.

Chronic Exposure Web Site. Research on mobile base stations and their impact on health.

Khurana VG, Hardell L, Everaert J, Bortkiewicz A, Carlberg M, Ahonen M. Epidemiological evidence for a health risk from mobile phone base stations. Int J Occup Environ Health. 2010 Jul-Sep;16(3):263-7.

Kundi M, Hutter HP. Mobile phone base stations-Effects on wellbeing and health. Pathophysiology. 16(2-3):123-135. 2009.

Levitt B, Lai H. Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environmental Review. 18:369–395. 2010. .
Manville, A. A briefing memorandum: What we know, can infer, and don’t yet know about impacts from thermal and non-thermal non-ionizing radiation to birds and other wildlife — for public release. July 14, 2016.

Sivani S, Sudarsanam D. Impacts of radio-frequency electromagnetic field (RF-EMF) from cell phone towers and wireless devices on biosystem and ecosystem--a review. Biology and Medicine. 4(4):202-216. 2012.

Yakymenko I, Sidorik E. Risks of carcinogenesis from electromagnetic radiation of mobile telephony devices. Experimental Oncology. 32(2):54-60. 2010.

Yakymenko I, Sidorik E, Kyrylenko S, Chekhun V. Long-term exposure to microwave radiation provokes cancer growth: evidences from radars and mobile communication systems. Experimental Oncology. 33(2):62-70.  2011.

Yakymenko I., Tsybulin O., Sidorik E. Henshel D., Krylenko O., Krylenko S. Oxidative mechanisms of biologic activity of low-intensity radiofrequency radiation. Electromagnetic Biology and Medicine. 7:1-16. 2015. 

Recent Studies

Al-Quzwini O, Al-Taee H, Al-Shaikh S. Male fertility and its association with occupational and mobile phone towers hazards: An analytic study. Middle East Fertility Society Journal. Avail. online Apr 8, 2016.

Baliatsas C, van Kamp I, Bolte J, Kelfkens G, van Dijk C, Spreeuwenberg P, Hooiveld M, Lebret E, Yzermans J. Clinically defined non-specific symptoms in the vicinity of mobile phone base stations: A retrospective before-after study. Sci Total Environ. 2016 Sep 15;565:714-20

Bienkowski P, Zubrzak B. Electromagnetic fields from mobile phone base station - variability analysis. Electromagn Biol Med. 2015 Sep;34(3):257-61.

Black B, Granja-Vazquez R, Johnston BR, Jones E, Romero-Ortega M (2016) Anthropogenic Radio-Frequency Electromagnetic Fields Elicit Neuropathic Pain in an Amputation Model. PLoS ONE 11(1): e0144268.

Cammaerts MC, Johansson O. Effect of man-made electromagnetic fields on common Brassicaceae Lepidium sativum (cress d’Alinois) seed germination: a preliminary replication study. Phyton, International Journal of Experimental Botany 2015; 84: 132-137.

Eskander EF, Estefan SF, Abd-Rabou AA. How does long term exposure to base stations and mobile phones affect human hormone profiles? Clinical Biochemistry, Volume 45, Issues 1–2. 2012, Pages 157-161.

Gandhi G, Kaur G, Nisar U. A cross-sectional case control study on genetic damage in individuals residing in the vicinity of a mobile phone base station. Electromagn Biol Med. 2014 9:1-11.

Gulati S, Yadav A, Kumar N, Kanupriya, Aggarwal NK, Kumar R, Gupta R. Effect of GSTM1 and GSTT1 Polymorphisms on Genetic Damage in Humans Populations Exposed to Radiation From Mobile Towers. Arch Environ Contam Toxicol. 2015 Aug 5.

Gulati S, Yadav A, Kumar N, Priya K, Aggarwal NK, Gupta R. Phenotypic and genotypic characterization of antioxidant enzyme system in human population exposed to radiation from mobile towers. Mol Cell Biochem. 2017 Aug 17.

Hardell L, Koppel T, Carlberg M, Ahonen M, Hedendahl L. Radiofrequency radiation at Stockholm Central Railway Station in Sweden and some medical aspects on public exposure to RF fields. International Journal of Oncology. Published online Aug 12, 2016. Open access:

Marinescu I, Poparlan C. Assessment of GSM HF-Radiation impact levels within the residential area of Craiova (Romania) city.  Procedia Environmental Sciences 32:177-183. 2016.

Martens AL, Slottje P, Timmermans DR, Kromhout H, Reedijk M, Vermeulen RC, Smid T. Modeled and Perceived Exposure to Radio-Frequency Electromagnetic Fields From Mobile-Phone Base Stations and the Development of Symptoms Over Time in a General Population Cohort. Am J Epidemiol. 2017 Apr 7:1-10.

Meo SA, Alsubaie Y, Almubarak Z, Almutawa H, AlQasem Y, Hasanato RM. Association of Exposure to Radio-Frequency Electromagnetic Field Radiation (RF-EMFR) Generated by Mobile Phone Base Stations with Glycated Hemoglobin (HbA1c) and Risk of Type 2 Diabetes Mellitus. Int J Environ Res Public Health. 2015 Nov 13;12(11):14519-14528.

Sagar S, Dongus S, Schoeni A, Roser K, Eeftens M, Struchen B, Foerster M, Meier N, Adem S, Röösli M. Radiofrequency electromagnetic field exposure in everyday microenvironments in Europe: A systematic literature review. J Expo Sci Environ Epidemiol. 2017 Aug 2.

Singh K, Nagaraj A, Yousuf A, Ganta S, Pareek S, Vishnani P. Effect of electromagnetic radiations from mobile phone base stations on general health and salivary function. J Int Soc Prevent Communit Dent 2016;6:54-9.

Waldmann-Selsam C, Balmori-de la Puente A, Breunig H, Balmori A. Radiofrequency radiation injures trees around mobile phone base stations. Sci Total Environ. 2016 Aug 20;572:554-569.

Zothansiama, Zosangzuali M, Lalramdinpuii M, Jagetia GC. Impact of radiofrequency radiation on DNA damage and antioxidants in peripheral blood lymphocytes of humans residing in the vicinity of mobile phone base stations. Electromagn Biol Med. 2017 Aug 4:1-11.


Best Best & Krieger. Letter to EMF Safety Network: Local Authority Over Wireless Facilities in Public Rights-of-Way. Apr 24, 2018.

Campanelli & Associates, P.C. Cell tower lawyers.

Center for Municipal Solutions. Excellent resource re: regulation of cell towers & wireless

Karish G, Barket E (Best Best & Krieger). Issues of Local Control and Wireless Telecommunication Facilities. Presented at League of California Cities City Attorneys’ Spring Conference, May 3, 2018. 22 pp.

League of Minnesota Cities. Cell Towers, Small Cell Technologies & Distributed Antenna Systems. Nov 4, 2016.

San Francisco Neighborhood Antenna-Free Union (SNAFU)


RCR Wireless News. Appeals Court rules that California cities have the right to block small cell based on aesthetic concerns. Sep 16, 2016.

Rouhan Sharma. A Towering Problem. Infrastructure Today, Feb 2016.

Special Correspondent. "Radiation levels of mobile towers should be cut." The Hindu. Feb 7, 2016.
"Stating that the current level of radiation (electromagnetic field, EMF) emitted by mobile phone towers was still high, Girish Kumar, Professor, Department of Electrical Engineering, IIT Bombay, on Saturday, urged the Centre to reduce the radiation level further.
The mobile tower radiation had been reduced [in India] from 45,000 milliwatt per square metre to 450 milliwatt a few years ago. It should be reduced to 10 milliwatt, he said ...."
Note: The FCC allows the American general public to be exposed from 5,800 milliwatts per square meter to 10,000 milliwatts per square meter depending on the frequency.
Lydia Beyoud. Not All ‘Small Cells' Created Equal, Say Municipalities in Wireless Siting Rules Suit. Bloomberg BNA. Apr 27, 2015. 
"... the number of small cell and DAS installations is expected to grow exponentially in the next few years. As many as 37 million small cell installations could be in place by 2017, and up to 16 million distributed antenna system (DAS) nodes could be deployed by 2018, according to the FCC."

Joel Moskowitz. Press Release: Cell Tower Radiation Affects Wildlife: Dept. of Interior Attacks FCC. Mar 2014. 
Ianthe Jeanne Dugan and Ryan Knutson. Cellphone Boom Spurs Antenna-Safety Worries. Wall Street Journal, Oct 2, 2014.