Tuesday, September 19, 2023

Does exposure to 4G LTE cell phone radiation impair cell phone users' health?

Although 4G has been in use for over a decade and far more people in the world are currently exposed to 4G mobile phone radiation than 5G, little attention has been paid to the potential harmful health effects of this environmental pollutant.

4G, 
also known as Long Term Evolution or LTE, is the fourth generation of cellular technology. It employs new digital signal processing and modulation to increase the capacity and speed of wireless telecommunications networks. 

The standard for LTE was finalized in December, 2008, and the first mobile phone to employ this technology was released in September 2010. By the end of 2017, 41 countries supported LTE coverage over at least 75% of their land area. In North America, the number of LTE mobile devices in use, 365 million, exceeded the size of the population. By 2021, 70 countries had LTE coverage available to at least 75% of the population.

Like 5G, LTE was launched without any pre-market safety testing. Research has found that exposure to LTE radiation leads to a change in intracellular reactive oxygen species (ROS) that may result in "genotoxic stress, decreased proliferation and cell senescence, or no physiological effects depending on ROS concentration and the differential sensitivity of various cells to ROS." Several studies on human subjects have found that short-term exposure to LTE radiation affects brain functioning. No research has examined the health effects of long-term exposure to LTE.

Although 4G technology has been in use for more than a decade, few studies have been conducted on the effects of exposure. The abstracts for these studies appear below.

--

4G mobile phone radiation alters some immunogenic and vascular gene expressions, and gross and microscopic and biochemical parameters in the chick embryo model

Islam MS, Islam MM, Rahman MM, Islam K. 4G mobile phone radiation alters some immunogenic and vascular gene expressions, and gross and microscopic and biochemical parameters in the chick embryo model. Vet Med Sci. 2023 Sep 19. doi: 10.1002/vms3.1273.

Abstract

Background: The risks to human health have grown over the past 10 years due to the excessive use of mobile phones.

Objectives: The study was designed to determine the harmful effects of 4G mobile phone radiation on the expression of immunogenic and vascular genes and gross, microscopic and biochemical alterations in the development of chicken embryos.

Methods: Sixty individuals in the exposure group were subjected to mobile phones with a specific absorption rate of 1.4 W/kg and a frequency of 2100 MHz positioned at a distance of 12 cm in the incubator for 60 min/night for 14 days. The histopathological examination involved hematoxylin and eosin staining, whereas cresyl violet staining was used to evaluate the condition and number of neurons in the brain. The biochemical parameters of amniotic fluid were analysed using the photometry method, and the expression of VEGF-A and immunity genes (AvBD9, IL6) was measured using the real-time PCR (qPCR) technique.

Results: Compared to the control, the exposure group's body weight and length significantly decreased (p < 0.05). Subcutaneous bleeding was seen in the exposure group. Urea, creatinine, alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase levels were all significantly higher than in the control group (p < 0.05). The exposed group showed pathological lesions in the liver and degenerated neurons with lightly stained nuclei in the cerebral cortex. Hyperchromatic neurons were significantly higher in the exposure group (58.8 ± 2.28) compared to the control (6.6 ± 0.44) (p < 0.05). 4G exposure reduced lymphocyte count in the caecal tonsil (86.8 ± 5.38) compared to the control (147.2 ± 9.06) (p < 0.05). Vascular gene mRNA expression was higher, but immune gene expression was lower in the exposed group.

Conclusion: Exposure to mobile phone radiation may result in gross, microscopic and biochemical changes, as well as alterations in gene expression that could hinder embryonic development.


--

Exposure to 1800 MHz LTE electromagnetic fields under proinflammatory conditions decreases the response strength and increases the acoustic threshold of auditory cortical neurons

Samira Souffi, Julie Lameth, Quentin Gaucher, Délia Arnaud-Cormos, Philippe Lévêque, Jean-Marc Edeline, Michel Mallat. Exposure to 1800 MHz LTE electromagnetic fields under proinflammatory conditions decreases the response strength and increases the acoustic threshold of auditory cortical neurons. Sci Rep. 2022 Mar 8;12(1):4063. doi: 10.1038/s41598-022-07923-9.

Abstract

Increased needs for mobile phone communications have raised successive generations (G) of wireless technologies, which could differentially affect biological systems. To test this, we exposed rats to single head-only exposure of a 4G long-term evolution (LTE)-1800 MHz electromagnetic field (EMF) for 2 h. We then assessed the impact on microglial space coverage and electrophysiological neuronal activity in the primary auditory cortex (ACx), under acute neuroinflammation induced by lipopolysaccharide. The mean specific absorption rate in the ACx was 0.5 W/kg. Multiunit recording revealed that LTE-EMF triggered reduction in the response strength to pure tones and to natural vocalizations, together with an increase in acoustic threshold in the low and medium frequencies. Iba1 immunohistochemistry showed no change in the area covered by microglia cell bodies and processes. In healthy rats, the same LTE-exposure induced no change in response strength and acoustic threshold. Our data indicate that acute neuroinflammation sensitizes neuronal responses to LTE-EMF, which leads to an altered processing of acoustic stimuli in the ACx.

Excerpt

In conclusion, our study reveals that a single head-only exposure to LTE-1800 MHz can interfere with the neuronal responses of cortical neurons to sensory stimuli. In line with previous characterizations of the effect of GSM-signal, our results show that the impact of LTE signal on neuronal activity varies according to the health state. Acute neuroinflammation sensitize neuronal responses to LTE-1800 MHz, resulting in altered cortical processing of auditory stimuli.


--

The effect of 4.5 G (LTE Advanced-Pro network) mobile phone radiation 
on the optic nerve

Erkin Özdemir, Ülkü Çömelekoglu, Evren Degirmenci, Gülsen Bayrak, Metin Yildirim, Tolgay Ergenoglu, Banu Coşkun Yılmaz, Begüm Korunur Engiz, Serap Yalin, Dilan Deniz Koyuncu, Erkan Ozbay. The effect of 4.5 G (LTE Advanced-Pro network) mobile phone radiation on the optic nerve. Cutan Ocul Toxicol. 2021 Mar 3;1-27. doi: 10.1080/15569527.2021.1895825.

Abstract

Purpose: Rapid development in mobile phone technologies increase the average mobile phone usage duration. This increase also triggers exposure to radiofrequency radiation (RF), which is a risk factor for the health. In this study, it was aimed to investigate the effect of mobile phone working with LTE-Advanced Pro (4.5G) mobile network on the optic nerve, which is responsible for the transmission of visual information.

Material and methods: Thirty-two rats divided into two groups as control (no RF, sham exposure) and experimental (RF exposure using a mobile phone with LTE-Advanced Pro network; 2 hours/day, 6 weeks). The visual evoked potential (VEP) was recorded and determined amplitudes and latencies of VEP waves. Optic nerve malondialdehyde level, catalase and superoxide dismutase activities were determined. Furthermore, ultrastructural and morphometric changes of optic nerve were evaluated.

Results: In VEP recordings, the mean VEP amplitudes of experimental group were significantly lower than control group. In ultrastructural evaluation, myelinated nerve fibers and glial cells were observed in normal histologic appearance both in sham and experimental group. However, by performing morphometric analysis, in the experimental group, axonal diameter and myelin thickness were shown to be lower and the G-ratio was higher than in the sham group. In the experimental group, malondialdehyde level was significantly higher and superoxide dismutase and catalase activities were significantly lower than sham group. There was a high correlation between VEP wave amplitudes and oxidative stress markers.

Conclusion: Findings obtained in this study support optic nerve damage. These results point out an important risk that may decrease the quality of life.


Excerpts

In recent years, everyone, from child to old, has a smartphone, and everyday a long time is passed looking at the screen of this phone. Comfort and efficiency achieved thanks to the high data transfer rate provided by LTE-Advanced Pro technology increase this time day by day. Eyes are the most affected body parts from this condition. In addition to the effects such as strabismus and eye impairment arising from looking at a small screen, it is also important to examine the hidden risks that the RF magnetic field created by the phone will cause on the eye. In this study, the effects of RF emission created by a LTE-Advanced Pro technology phone on the optic nerve were examined in all aspects and the findings were given in the previous section. Briefly it can be said that, for the first time in scientific literature, the findings of the present study indicate that the LTE-Advanced Pro mobile phone radiation causes significant damage by triggering oxidative stress in the optic nerve. LTE-Advanced Pro technology uses a wider RF band between 800 MHz and 2600 MHz and the network system selects the most appropriate band itself according to the user’s requirements. It is known that penetration depth of RF increases with decreasing frequency [39]. Since effects of RF radiation were observed on the optic nerve which is behind the eye, it can be said that low frequency bands such as 800 MHz were mostly active during the experiments. Maybe this inference cannot be generalized for all communication purposes, but usage probability of low frequency bands during LTE-Advanced Pro smart phone usage will always keep the damage risk on optic nerve alive.

Fig. 3A and 3B show the distribution of electric field and SAR, respectively. As seen, maximum E field was 5.0 V/m (Fig. 3A) and maximum SAR (10 g) was 0.01 W/kg (Fig. 3B). The SAR value in the area of eyes was about 0.0035 W/kg (Fig. 3B).

Before and after exposure, body surface temperatures were 28.08 ± 0.19 and 28.07 ± 0.26 °C, respectively in the sham group. These values were 28.37 ± 0.29 and 28.39 ± 0.22 °C, respectively for the RF groups. There was no significant difference within sham (p = 0.275) and RF (p = 0.120) groups before and after exposure. Also, there was no significant differences in surface body temperature between sham and RF exposed groups before (p = 0.142) and after (p = 0.321) exposure.

In the present study, for the first time, it was shown that exposition to 4.5 G mobile phone radiation for 2 hours/day for 6 weeks causes optic nerve damage. The optic nerve transmits all visual information to the visual cortex, and any damage in this nerve can cause permanent and serious vision loss. This study demonstrated that RF exposure may be an environmental risk factor for eye toxicity and potential eye disorders. Further studies are needed to reveal the potentiality of the risk in this area.  

--

Hematobiochemical and histopathological alterations of kidney and testis 
due to exposure of 4G cell phone radiation in mice

Imam Hasan, Tanjina Amin, Md. Rafiqul Alam, Mohammad Rafiqul Islam. Hematobiochemical and histopathological alterations of kidney and testis due to exposure of 4G cell phone radiation in mice. Saudi Journal of Biological Sciences. Available online 17 February 2021. https://doi.org/10.1016/j.sjbs.2021.02.028.

Abstract

The radiofrequency electromagnetic radiation emitted by smart phones on biological systems has wide media coverage and public concern in recent years. The aim of this study was to explore the effects of fourth-generation cell phone radiation exposure on hematological (Total leukocyte count, Total erythrocyte count, and hemoglobin %), biochemical (Serum creatinine) parameters, and histopathological changes in the kidney and testis of Swiss albino mice. A total of 30 male Swiss albino mice weighing 45–65 g was randomly divided into three groups (n = 10). The first group A was the control group, the second group B, was exposed to 40 minutes of mobile phone radiation daily, the third group C was exposed to 60 minutes of radiation daily from two 2400 Megahertz fourth-generation connected mobile phones for 60 days, respectively. The electromagnetic radiation frequency radiometer measured the frequency of electromagnetic radiation emitted from cell phones. The specific absorption rate was calculated as 0.087 W/kg. The control group was kept under similar conditions, but the electromagnetic field was not given for the same period. All the mice were sacrificed at the end of the experiment. The blood samples were collected for hematobiochemical study, and then kidney and testis tissues were collected for histopathological study. Results of the study showed that the body weight and total erythrocyte count values were significantly (p < 0.05) decreased while total leukocyte count, hemoglobin %, and serum creatinine values were significantly (p < 0.05) increased in both the radiation exposure groups relative to the control group. Histopathological observation showed the kidney of 60 minutes exposed mice interstitial inflammation that causes marked mononuclear cellular infiltration compared to the 40 minutes and control mice. Compared to control mice, histopathological examinations of testicular tissue from the exposed mice, showed irregular in shapes and non-uniform sizes and fewer spermatogenic cells layer that leads to the larger lumen in the seminiferous tubules. It is concluded that fourth-generation cell phone radiation exposure may affect blood hemostasis and inflammation of mice's kidney and testis tissue. Based on these studies, it is important to increase public consciousness of potential adverse effects of mobile phone radiofrequency electromagnetic radiation exposure.


--

Empirical study on specific absorption rate of head tissues due to induced heating of 4G cell phone radiation

Christopher B, Mary S, Khandaker MU, Jojo PJ. Empirical study on specific absorption rate of head tissues due to induced heating of 4G cell phone radiation. Radiation Physics and Chemistry. 178(Special Issue): 108910. Jan 2021. DOI:10.1016/j.radphyschem.2020.108910.

Abstract

Exposures to electromagnetic radiation mainly from the extended use of mobile phones may initiate biological damages in the human body at the macromolecular level. Several studies on human and animal models have shown significant changes in the functions of neural cells. Present empirical study analyses the thermal changes and the specific absorption rates (SAR) of brain, eye and skin tissues due to prolonged exposure to mobile phone radiation. A phantom, simulating human head with skin, skull and brain was used for the study. The Phantom was exposed to radiation for longer durations (600 s and more) and the temperature variations at different specific points were studied with sensitive thermocouple probes. SAR (1 g of contiguous tissue) values were determined using the variations of temperature and other parameters. The average rise in brain temperature was found to be 0.10 +/- 0.05 degrees C at 30 mm deep in the brain and the estimated SAR was 0.66 +/- 0.35 Wkg(-1). The increase in temperature for the eye socket was 0.03 +/- 0.02 degrees C with SAR 0.15 +/- 0.08 Wkg(-1). The average rise in temperature for skin was 0.14 +/- 0.05 degrees C and the SAR was 0.66 +/- 0.42 Wkg(-1). Although the measured SAR lie within the safe limit of 2 Wkg(-1) recommended by the international regulatory body, considering the tremendous growth in the number of mobile phone users and prolonged use of mobile phone in communication purposes, the cumulative effects could be a real concern for human health.


--

Functional and network analyses of human exposure to long-term evolution signal

Lei Yang, Chen Zhang, Zhiye Chen, Congsheng Li, Tongning Wu. Functional and network analyses of human exposure to long-term evolution signal. Environ Sci Pollut Res Int. 2020 Sep 25. doi: 10.1007/s11356-020-10728-w.

Abstract

Human exposure to the electromagnetic field emitted by wireless communication systems has raised public concerns. There were claims of the potential association of some neurophysiological disorders with the exposure, but the mechanism is yet to be established. The wireless networks, recently, experience a transition from the 4th generation (4G) to 5th generation (5G), while 4G long-term evolution (LTE) is still the frequently used signal in wireless communication. In the study, exposure experiments were conducted using the LTE signal. The subjects were divided into sham and real exposure groups. Before and after the exposure experiments, they underwent functional magnetic resonance imaging. Within-session and between-session comparisons have been executed for functional connectivity and network properties. Individual specific absorption rate (SAR) was also calculated. The results indicated that acute LTE exposure beneath the safety limits modulated both the functional connection and graph-based properties. To characterize the effect of functional activity, SAR averaged over a certain tissue mass was not an appropriate metric. The potential neurophysiological effect of 5G exposure has also been discussed in the study.

https://pubmed.ncbi.nlm.nih.gov/32974829/

Excerpts

Since 2019, the fifth-generation (5G) wireless network has been implemented. Two different frequency ranges available for 5G wireless technology include- frequency range 1 (FR1) and frequency range 2 (FR2). At present, the popular commercial frequency at FR1 was around 2.4 and 3.5 GHz, close to the current 3G and 4G frequencies. The emission power of 5G mobile phones is comparable to that of 3G and 4G terminals. Most of the existed literature, as well as our studies, narrated similar activated sites (frontal and temporal lobules) for different frequencies/modulations. It is, therefore, reasonable to expect that the exposure to new generation wireless signals would result in a similar effect.

Conclusion

Human brain modulation following LTE exposure was first evaluated by functional and network metrics. The topological changes have been reported, and their consistency with the previous analysis was highlighted. Integrating the results from the regional BOLD variation, intraregional similarity, and hypothesis-driven FC analysis, a comprehensive view for the brain activity by the exposure of LTE signal and the signal of next-generation can be obtained. Another novelty was that no correlation was found between the peak SAR values and the altered topological parameters. It demonstrated peak SAR averaged over a certain mass, which was used for assessing the thermal effect of human exposure, was incongruous to quantify the neurophysiological effect of EMF exposure. It may clarify the inconsistency in current human exposure studies.

--

Continuous Exposure to 1.7 GHz LTE (4G) Electromagnetic Fields Increases Intracellular Reactive Oxygen Species to Decrease Human Cell Proliferation and Induce Senescence


Jisu Choi, Kyeongrae Min, Sangbong Jeon, Nam Kim, Jeong-Ki Pack, Kiwon Song. Continuous Exposure to 1.7 GHz LTE Electromagnetic Fields Increases Intracellular Reactive Oxygen Species to Decrease Human Cell Proliferation and Induce Senescence. Sci Rep. 2020 Jun 8;10(1):9238. doi: 10.1038/s41598-020-65732-4.

Abstract

Due to the rapid development of mobile phone technology, we are continuously exposed to 1.7 GHz LTE radio frequency electromagnetic fields (RF-EMFs), but their biological effects have not been clarified. Here, we investigated the non-thermal cellular effects of these RF-EMFs on human cells, including human adipose tissue-derived stem cells (ASCs), Huh7 and Hep3B liver cancer stem cells (CSCs), HeLa and SH-SY5Y cancer cells, and normal fibroblast IMR-90 cells. When continuously exposed to 1.7 GHz LTE RF-EMF for 72 h at 1 and 2 SAR, cell proliferation was consistently decreased in all the human cells. The anti-proliferative effect was higher at 2 SAR than 1 SAR and was less severe in ASCs. The exposure to RF-EMF for 72 h at 1 and 2 SAR did not induce DNA double strand breaks or apoptotic cell death, but did trigger a slight delay in the G1 to S cell cycle transition. Cell senescence was also clearly observed in ASC and Huh7 cells exposed to RF-EMF at 2 SAR for 72 h. Intracellular ROS increased in these cells and the treatment with an ROS (reactive oxygen species) scavenger recapitulated the anti-proliferative effect of RF-EMF. These observations strongly suggest that 1.7 GHz LTE RF-EMF decrease proliferation and increase senescence by increasing intracellular ROS in human cells.

Conclusion

Altogether, this study as well as other studies strongly suggest that RF-EMF exposure leads to a change in intracellular ROS levels that may result in genotoxic stress, decreased proliferation and cell senescence, or no physiological effects depending on ROS concentration and the differential sensitivity of various cells to ROS. Thus, the mechanism behind RF-EMF exposure altering intracellular ROS levels should be further studied to elucidate the biological effects of RF-EMFs.

It is not plausible to directly predict the physiological effects of 1.7 GHz LTE RF-EMF from our cell-based study. However, the anti-proliferative effect of 1.7 GHz LTE RF-EMF on various human cells in this study suggests that the exposure to 1.7 GHz LTE RF-EMF would be more harmful to children, whose adult stem cells should be very active for growth and may accelerate the aging of body cells. We also carefully suggest that the anti-proliferative effect of various cancer cells by 1.7 GHz LTE RF-EMF would be interpreted with care, considering that both positive and negative effects of RF-EMF have been reported on cancer development.


--

Empirical study on specific absorption rate of head tissues due to induced heating of 4G cell phone radiation

Christopher B, Mary YS, Khandaker MU, Jojo PJ. Empirical study on specific absorption rate of head tissues due to induced heating of 4G cell phone radiation. Radiation Physics and Chemistry. Published online Apr 4, 2020. https://doi.org/10.1016/j.radphyschem.2020.108910

Highlights

• Induced heating of 4G cell phone radiation affects the functions of neural cells.
• Temperature and SAR of brain, eye and skin tissues are measured in laboratory condition.
• Rise in temperature and SAR values are found in the studied tissues for confrontation of 600 s.
• Long time and over exposure to mobile phone radiation may affect the individual health.

Abstract

Exposures to electromagnetic radiation mainly from the extended use of mobile phones may initiate biological damages in the human body at the macromolecular level. Several studies on human and animal models have shown significant changes in the functions of neural cells. Present empirical study analyses the thermal changes and the specific absorption rates (SAR) of brain, eye and skin tissues due to prolonged exposure to mobile phone radiation. A phantom, simulating human head with skin, skull and brain was used for the study. The Phantom was exposed to radiation for longer durations (600 s and more) and the temperature variations at different specific points were studied with sensitive thermocouple probes. SAR (1 g of contiguous tissue) values were determined using the variations of temperature and other parameters. The average rise in brain temperature was found to be 0.10 ± 0.05 °C at 30 mm deep in the brain and the estimated SAR was 0.66 ± 0.35 Wkg-1. The increase in temperature for the eye socket was 0.03 ± 0.02 °C with SAR 0.15 ± 0.08 Wkg-1. The average rise in temperature for skin was 0.14 ± 0.05 °C and the SAR was 0.66 ± 0.42 Wkg-1. Although the measured SAR lie within the safe limit of 2 Wkg-1 recommended by the international regulatory body, considering the tremendous growth in the number of mobile phone users and prolonged use of mobile phone in communication purposes, the cumulative effects could be a real concern for human health.


--

Effects of mobile phone radiation on certain hematological parameters

Christopher B, Sheena MY, Uddin Khandaker M, Bradley DA, Chew MT, Jojo PJ.  Effects of mobile phone radiation on certain hematological parameters. Radiation Physics and Chemistry. Published online September 14, 2019. 108443. https://doi.org/10.1016/j.radphyschem.2019.108443.

Highlights

• Mobile phone radiation affects blood hemoglobin level, white blood cell and platelets count and erythrocytes sedimentation rate.
• Effects of mobile phone radiation on hematological factors studied in a controlled condition in the laboratory.
• A matched case control approach was adopted for the investigation.
• Long time and over exposure to mobile phone radiation may affect the individual health.

Abstract

Exorbitant chronic exposure to any sort of radiation is hazardous to human health. Besides ionizing radiation, exposures to electromagnetic radiation mainly from the use of mobile phones have become a matter of great health concern, especially its extortionate use even by children. At the same time there are several myths related to the ill effects including carcinogenicity of the prolonged exposure continuously. The objective of this investigation was to find the effect on certain vital hematological parameters namely hemoglobin level, white blood cell (WBC) count, platelet count and erythrocytes sedimentation rate (ESR) level due to the prolonged exposure to mobile radiations through in vitro examination of human blood samples. Matched case control methodology was adopted for the study. Blood samples were collected by clinicians from 27 voluntary subjects for investigation. From each, one sample was kept un-exposed while the other three samples were exposed to mobile microwave radiations for 60 min continuously in identical and controlled conditions. A 4G hand phone of a very popular brand having transmission frequency range from 2.3 to 2.4 GHz including uplink and downlink was used. Hematological analyses were carried out on fresh samples immediately after collection. For comparison of the levels of hematological parameters, blood exposed to 1 h of phone radiation and control were analysed. Experimental results show that there is a significant change on the hematological components. The exposed blood samples were found to have decrease in platelet count only. Hemoglobin level, ESR rate and the WBC counts were found to be increased. While these observations are performed in a controlled laboratory conditions, the tremendous growth in number of mobile phone users, the effects could be many more folds especially in work places and cities even through passive exposure.

https://www.sciencedirect.com/science/article/abs/pii/S0969806X19305481

--

Early-life exposure to pulsed LTE radiofrequency fields causes persistent changes in activity and behavior in mice

Broom KA, Findlay R, Addison DS, Goiceanu C, Sienkiewicz Z. Early-life exposure to pulsed LTE radiofrequency fields causes persistent changes in activity and behavior in C57BL/6 J mice. Bioelectromagnetics. 2019 Sep 15. doi: 10.1002/bem.22217.

Abstract

Despite much research, gaps remain in knowledge about the potential health effects of exposure to radiofrequency (RF) fields. This study investigated the effects of early-life exposure to pulsed long term evolution (LTE) 1,846 MHz downlink signals on innate mouse behavior. Animals were exposed for 30 min/day, 5 days/week at a whole-body average specific energy absorption rate (SAR) of 0.5 or 1 W/kg from late pregnancy (gestation day 13.5) to weaning (postnatal day 21). A behavioral tracking system measured locomotor, drinking, and feeding behavior in the home cage from 12 to 28 weeks of age. The exposure caused significant effects on both appetitive behaviors and activity of offspring that depended on the SAR. Compared with sham-exposed controls, exposure at 0.5 W/kg significantly decreased drinking frequency (P ≤ 0.000) and significantly decreased distance moved (P ≤ 0.001). In contrast, exposure at 1 W/kg significantly increased drinking frequency (P ≤ 0.001) and significantly increased moving duration (P ≤ 0.005). In the absence of other plausible explanations, it is concluded that repeated exposure to low-level RF fields in early life may have a persistent and long-term effect on adult behavior.


--

Long-term exposure to 4G smartphone radiation diminished male reproductive potential in testes of adult rats

Yu G, Tang Z, Chen H, Chen Z, Wang L, et al.  Long-term exposure to 4G smartphone radiofrequency electromagnetic radiation diminished male reproductive potential by directly disrupting Spock3-MMP2-BTB axis in the testes of adult rats. Sci Total Environ. 2019 Aug 31;698:133860. doi: 10.1016/j.scitotenv.2019.133860.

Abstract

The correlation between long-term exposure to SRF-EMR and the decline in male fertility is gradually receiving increasing attention from the medical society. While male reproductive organs are often exposed to SRF-EMR, little is currently known about the direct effects of long-term SRF-EMR exposure on the testes and its involvement in the suppression of male reproductive potential. The present study was designed to investigate this issue by using 4G SRF-EMR in rats. A unique exposure model using a 4G smartphone achieved localized exposure to the scrotum of the rats for 6 h each day (the smartphone was kept on active talk mode and received an external call for 1 min over 10 min intervals). Results showed that SRF-EMR exposure for 150 days decreased sperm quality and pup weight, accompanied by testicular injury. However, these adverse effects were not evident in rats exposed to SRF-EMR for 50 days or 100 days. Sequencing analysis and western blotting suggested Spock3 overexpression in the testes of rats exposed to SRF-EMR for 150 days. Inhibition of Spock3 overexpression improved sperm quality decline and alleviated testicular injury and BTB disorder in the exposed rats. Additionally, SRF-EMR exposure suppressed MMP2 activity, while increasing the activity of the MMP14-Spock3 complexes and decreasing MMP14-MMP2 complexes; these results were reversed by Spock3 inhibition. Thus, long-term exposure to 4G SRF-EMR diminished male fertility by directly disrupting the Spock3-MMP2-BTB axis in the testes of adult rats. To our knowledge, this is the first study to show direct toxicity of SRF-EMR on the testes emerging after long-term exposure.


--

Short-term radiofrequency exposure from new generation mobile phones reduces EEG alpha power with no effects on cognitive performance.

Vecsei Z, Knakker B, Juhász P, Thuróczy G, Trunk A, Hernádi I. Short-term radiofrequency exposure from new generation mobile phones reduces EEG alpha power with no effects on cognitive performance. Sci Rep. 2018 Dec 20;8(1):18010. doi: 10.1038/s41598-018-36353-9.

Abstract

Although mobile phone (MP) use has been steadily increasing in the last decades and similar positive trends are expected for the near future, systematic investigations on neurophysiological and cognitive effects caused by recently developed technological standards for MPs are scarcely available. Here, we investigated the effects of radiofrequency (RF) fields emitted by new-generation mobile technologies, specifically, Universal Mobile Telecommunications System (UMTS) and Long-Term Evolution (LTE), on intrinsic scalp EEG activity in the alpha band (8-12 Hz) and cognitive performance in the Stroop test. The study involved 60 healthy, young-adult university students (34 for UMTS and 26 for LTE) with double-blind administration of Real and Sham exposure in separate sessions. EEG was recorded before, during and after RF exposure, and Stroop performance was assessed before and after EEG recording. Both RF exposure types caused a notable decrease in the alpha power over the whole scalp that persisted even after the cessation of the exposure, whereas no effects were found on any aspects of performance in the Stroop test. The results imply that the brain networks underlying global alpha oscillations might require minor reconfiguration to adapt to the local biophysical changes caused by focal RF exposure mimicking MP use.

Open access paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6301959/

--

The Effect of a Single 30-Min Long Term Evolution Mobile Phone-Like Exposure on Thermal Pain Threshold of Young Healthy Volunteers

Vecsei Z, Thuróczy G, Hernádi I. The Effect of a Single 30-Min Long Term Evolution Mobile Phone-Like Exposure on Thermal Pain Threshold of Young Healthy Volunteers. Int J Environ Res Public Health. 2018 Aug 27;15(9). pii: E1849. doi: 10.3390/ijerph15091849.

Abstract

Although the majority of mobile phone (MP) users do not attribute adverse effects on health or well-being to MP-emitted radiofrequency (RF) electromagnetic fields (EMFs), the exponential increase in the number of RF devices necessitates continuing research aimed at the objective investigation of such concerns. Here we investigated the effects of acute exposure from Long Term Evolution (LTE) MP EMFs on thermal pain threshold in healthy young adults. We use a protocol that was validated in a previous study in a capsaicin-induced hyperalgesia model and was also successfully used to show that exposure from an RF source mimicking a Universal Mobile Telecommunications System (UMTS) MP led to mildly stronger desensitization to repeated noxious thermal stimulation relative to the sham condition. Using the same experimental design, we did not find any effects of LTE exposure on thermal pain threshold. The present results, contrary to previous evidence obtained with the UMTS modulation, are likely to originate from placebo/nocebo effects and are unrelated to the brief acute LTE EMF exposure itself. The fact that this is dissimilar to our previous results on UMTS exposure implies that RF modulations might differentially affect pain perception and points to the necessity of further research on the topic.


--

Modulation of brain functional connectivity by exposure to LTE (4G) cell phone radiation 

Wei Y, Yang J, Chen Z, Wu T, Lv B. Modulation of resting‐state brain functional connectivity by exposure to acute fourth‐generation long‐term evolution electromagnetic field: An fMRI study. Bioelectromagnetics. Published online 18 December 2018. 

Abstract

By now, the neurophysiological effect of electromagnetic field (EMF) exposure and its underlying regulating mechanisms are not well manifested. In this study, we aimed to investigate whether acute long‐term evolution (LTE) EMF exposure could modulate brain functional connectivity using regional homogeneity (ReHo) method and seed‐based analysis on resting‐state functional magnetic resonance imaging (fMRI). We performed the LTE‐EMF  exposure experiment and acquired the resting‐state brain activities before and after EMF exposure. Then we applied ReHo index to characterize the localized functional connectivity and seed‐based method to evaluate the inter‐regional functional connectivity. Statistical comparisons were conducted to identify the possible evidence of brain functional connectivity modulation induced by the acute LTE‐EMF exposure. We found that the acute LTE‐EMF exposure modulated localized intra‐regional connectivity (p < 0.05, AlphaSim corrected, voxel size ≥ 18) and inter‐regional connectivity in some brain regions (p < 0.05, AlphaSim corrected, voxel size ≥ 18). Our results may indicate that the approaches relying on network‐level inferences could provide deeper insight into the acute effect on human functional activity induced by LTE‐EMF exposure.

Excerpts

"Currently, multiple standards exist for wireless communication, which ranges from second‐generation (2G, GSM) to third‐generation (3G, UMTS) and fourth‐generation (4G, LTE) networks in daily life. Fifth‐generation (5G) networks will start to appear as a commercial infrastructure in the near future. Although we enjoy the convenience of mobile phones, the widespread use of them has raised attention about the possible health effects of radiofrequency (RF) electromagnetic field (EMF) exposure [ICNIRP, 1998].

With neuroimaging and neuropsychology tools, the effect of EMF on the human brain can be reflected as signals of electrical activity [Hamblin et al., 2006; Croft et al., 2010; Lustenberger et al., 2013; Roggeveen et al., 2015a, b], cortical excitability [Tombini et al., 2013], cerebral blood flow [Aalto et al., 2006], brain glucose metabolism [Volkow et al., 2011], and hemodynamic responses [Volkow et al., 2011; Curcio et al., 2012]. Previous studies reported that GSM signals modulated alpha band power in resting‐state electroencephalogram (EEG) [Croft et al., 2010] or some event‐related potential (ERP) components during cognitive tasks [Hamblin et al., 2006], whereas other studies did not detect any GSM exposure‐induced changes in brain activity [Curcio et al., 2012]. Although some studies showed no significant effects of 3G signals on any neurophysiological measurements [Zhang et al., 2017], recent EEG studies reported significant EEG alterations associated with 3G mobile phone radiation [Roggeveen et al., 2015a, b]. The inconsistency could partly be attributed to different exposure frequencies, modulation modes, and exposure durations [Zhang et al., 2017]. For 4G‐related signals, only our two previous studies have investigated the acute effect of long‐term evolution (LTE) EMF exposure on human brain function [Lv et al., 2014; Yang et al., 2016] using EEG and functional magnetic resonance imaging (fMRI). We found that 30 min of LTE‐EMF exposure modulated the alpha/beta EEG bands [Yang et al., 2016] and spontaneous low‐frequency fluctuations [Lv et al., 2014] in some brain regions. Since LTE networks have been widely deployed, we should make more effort to evaluate the possible effects of LTE‐EMF exposure from different perspectives."

"In this study, we aimed to investigate whether acute LTE‐EMF exposure could modulate brain functional connectivity using resting‐state fMRI. We performed LTE‐EMF exposure experiments lasting for 30 min under a controllable environment and recorded the resting‐state brain activities before and after EMF exposure. Then, we applied the regional homogeneity (ReHo) index [Zang et al., 2004] to characterize localized intraregional connectivity and the seed‐based functional connectivity method [Margulies et al., 2010] to evaluate interregional brain connectivity. Statistical comparisons were conducted to identify possible evidence of brain functional connectivity modulation induced by acute LTE‐EMF exposure."

“To eliminate study biases, we employed a double‐blind, crossover, randomized, and counterbalanced design. Each participant underwent two experimental sessions including real exposure and sham exposure, which were separated by 1 day….The time‐division LTE signal (2.573 GHz) was produced by a signal generator a standard formulation for LTE signals….The power delivered to the standard dipole of 2.6 GHz was 24 dBm (mean value), which was equivalent to a theoretical maximal emission by an LTE terminal. The experiments were conducted in a shielding room to avoid the influence of environmental EMF. Each exposure session lasted for 30 min.”

“Numerical simulations that yielded spatial peak SAR averaging over 10 g tissues for the subjects was 0.98 ± 0.27 W/kg, with a maximal value of 1.52 W/kg, which was below the safety limits [ICNIRP, 1998].”

“In our previous studies, we found that LTE‐EMF exposure depressed the amplitude of spontaneous low frequency fluctuations (ALFFs) in some brain regions [Lv et al., 2014], such as those surrounding the left superior temporal gyrus and middle temporal gyrus (STG_L and MTG_L), right superior temporal gyrus (STG_R), right medial frontal gyrus, and right paracentral lobule (MFG_R and PCL_R). In the present study, we found new evidence that acute LTE‐EMF exposures lasting for 30 min modulated brain functional connectivity including not only localized intraregional connectivity, but also interregional connectivity.”

"Although the SAR values by LTE‐EMF exposure indicated no obvious temperature increase during the exposure experiments and the brain was excellent in terms of thermal regulation, we could not preclude that thermal changes, even minute changes, could be responsible for the instantaneous changes in neural firing. SAR is a metric averaging over 6 min, and its applicability for neurological studies should be discussed."

Conclusion

"Our results may indicate that approaches relying on network‐level inferences can provide deeper insights into the acute effects of LTE‐EMF exposure with intensities below the current safety limits on human functional connectivity. In the future, we need to investigate the evolution of the effect over time.”


--

Effect of Electromagnetic Waves from Mobile Phones on Spermatogenesis in the Era of 4G-LTE

Oh JJ, Byun SS, Lee SE, Choe G, Hong SK. Effect of Electromagnetic Waves from Mobile Phones on Spermatogenesis in the Era of 4G-LTE. Biomed Res Int. 2018 Jan 29;2018:1801798.

Abstract

Objective  To investigate the effect of long duration exposure to electromagnetic field from mobile phones on spermatogenesis in rats using 4G-LTE.

Methods  Twenty Sprague-Dawley male rats were placed into 4 groups according to the intensity and exposure duration: Group 1 (sham procedure), Group 2 (3 cm distance + 6 h exposure daily), Group 3 (10 cm distance + 18 h exposure daily), and Group 4 (3 cm distance + 18 h exposure daily). After 1 month, we compared sperm parameters and histopathological findings of the testis.

Results  The mean spermatid count (×106/ml) was 398.6 in Group 1, 365.40 in Group 2, 354.60 in Group 3, and 298.60 in Group 4 (p = 0.041). In the second review, the mean count of spermatogonia in Group 4 (43.00) was significantly lower than in Group 1 (57.00) and Group 2 (53.40) (p < 0.001 and p = 0.010, resp.). The sum of the germ cell counts was decreased in Group 4 compared to Groups 1, 2, and 3 (p = 0.032). The mean Leydig cell count was significantly decreased in Group 4 (p < 0.001).

Conclusions  The longer exposure duration of electromagnetic field decreased the spermatogenesis. Our findings warrant further investigations on the potential effects of EMF from mobile phones on male fertility.


Open access paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896334/



May 2, 2016

By the end of 2013, 100 million cell phones in the U.S. operated on LTE. This number worldwide is expected to exceed 1 billion by the end of this year. 

Following is a summary of the second study published on the effects of 4th generation LTE cell phone radiation on the brain activity of cell phone users by the China Academy of Telecommunication Research of the Ministry of Industry and Information Technology.

The original study showed that 30 minutes of exposure to LTE phone radiation affected brain activity in the left superior temporal gyrus, left middle temporal gyrus, right superior temporal gyrus, right medial frontal gyrus and right paracentral lobule. The current study found that a 30-minute exposure to LTE radiation modulated the EEG in the alpha and beta bands at the frontal region of the near and remote sides, and at the temporal region on the near side.

--

Long-Term Evolution EMF Exposure Modulates Resting State EEG on Alpha and Beta Bands

Yang L, Chen Q, Lv B, Wu T. Long-Term Evolution Electromagnetic Fields Exposure Modulates the Resting State EEG on Alpha and Beta Bands. Clin EEG Neurosci. 
2017 May;48(3):168-175. doi: 10.1177/1550059416644887.

Abstract


Long-term evolution (LTE) wireless telecommunication systems are widely used globally, which has raised a concern that exposure to electromagnetic fields (EMF) emitted from LTE devices can change human neural function. To date, few studies have been conducted on the effect of exposure to LTE EMF. Here, we evaluated the changes in electroencephalogram (EEG) due to LTE EMF exposure. An LTE EMF exposure system with a stable power emission, which was equivalent to the maximum emission from an LTE mobile phone, was used to radiate the subjects. Numerical simulations were conducted to ensure that the specific absorption rate in the subject's head was below the safety limits. Exposure to LTE EMF reduced the spectral power and the interhemispheric coherence in the alpha and beta bands of the frontal and temporal brain regions. No significant change was observed in the spectral power and the inter-hemispheric coherence in different timeslots during and after the exposure. These findings also corroborated those of our previous study using functional magnetic resonant imaging.

http://1.usa.gov/2475GM3

Excerpts

".. the results of resting state EEG experiments have been contradictory. For example, some studies have reported enhancement of the alpha (8-12 Hz) and beta (13-30 Hz) band power values after exposure to pulse-modulated 450- and 900-MHz signals, pulse-modulated magnetic fields, and active mobile phone signals. In contrast, some studies have shown decreased alpha band activity after 20 minutes of extremely low-frequency EMF exposure, or 5 minutes of magnetic field exposure, or global system for mobile communications (GSM) EMF exposure. Many studies also found no changes in the EEG after either modulated or unmodulated EMF exposure. These inconsistencies could be attributed not only to the differences in the signal type, the modulation, the exposure frequency, the exposure intensity individual anatomy, the ages of the subjects, and the exposure duration but also to the lack of rigorous experimental designs. Most of the previously published studies have focused on GSM, WiFi, and Universal Mobile Telecommunications System (UMTS), signals. An emerging technology, “long term evolution” (LTE) wireless service, has been deployed since 2009 and the number of global LTE subscribers is expected to reach 1.37 billion by the end of 2015. Other than our previous functional magnetic resonance imaging (fMRI) study, there are very few reports on the effect of exposure to LTE EMF on brain function. We previously found that 30 minutes of exposure to LTE EMF modulated the spontaneous low-frequency fluctuations. We were interested in confirming our previous results using another neurophysiological method and also sought to assess the evolution of the effect over time during such exposure. In this article, we have investigated for the first time the changes in the resting state EEG caused by exposure to LTE signals. The exposure dose was below the current safety limit. In order to assess brain activities on different levels, we evaluated spectral power and interhemispheric coherence, which allowed investigation of EEG changes in specific brain regions, as well as their correlations, at different time points. We show that exposure to LTE EMF decreased the alpha and beta band power spectrum and interhemisphere coherence."

"The age of the subjects was 30.2 ± 2.7 years."

"A plastic spacer of 1 cm was used to maintain the distance between the right ear and a standard dipole. We applied 2 power meters to ensure a constant incident power to the emission dipole. The power delivered to the dipole was 24 dBm (peak value), equivalent to a theoretical maximum emission by an LTE terminal."

"All 25 subjects participated in the double-blind and counterbalanced experiment."

"The experiment included 2 sessions, which were separated by 1 week. Each session lasted 50 minutes and comprised 5 time slots. We indicated each time slot (10 minutes) in a session as sub1 to sub5. The radiation dipole was power off for the first (preexposure, sub1) and the last 10 minutes (postexposure, sub5) timeslots. Subjects were exposed to real EMF exposure in the 3 time slots (sub2 to sub4) between the first and the last 10 minutes in only 1 of the 2 sessions. The order of the 2 sessions was randomly selected per subject. The subjects were not informed of the sequence of each session; however, they were aware of the possibility of being exposed. On the other hand, the staff who analyzed the data did not know the sources of the EEG traces."

"The simulations yielded 1.34 W/kg (pSAR10g) and 1.96 W/kg (pSAR1g), with the electrodes, and 1.27 W/kg (pSAR10g) and 1.78 W/kg (pSAR1g), without the electrodes (Figure 2) when the dipole emitted radiation. Therefore, the presence of the EEG electrodes increased pSAR10g and pSAR1g by about 5.5% and 10.1%, respectively. Accordingly, the maximum resultant temperature increase was no more than 0.1°C ...."

"Previous studies on GSM and UMTS signal exposure frequently reported changes in interhemispheric coherence and the spectral power in the alpha band in the frontal and temporal regions, which were also confirmed by our results on LTE EMF exposure. Moreover, modulation of the power spectrum in the beta band, including both an increase and a decrease, was reported. Several reasons may account for the inconsistency. First, the signal frequency and its modulation influenced the affected EEG band: for example, exposure to 2G signals affect the alpha rhythms, whilst exposure to 3G signals do not. In contrast, the modulated 450-MHz signals of various intensities can change beta activity much more markedly than alpha band power. Second, gender and the individual sensitivity 38,40 may influence the effect on different bands. Hence, we attempted to reduce the variability by enrolling the subjects with the same gender and age."

"In particular, power spectral analysis has shown significant differences in the left frontal brain regions, that is, the remote side, on exposure. This may be associated with modulation of neural activity in the remote/contralateral brain regions. The remote effects of EMF have been observed in many previous studies. Our results reconfirmed that the effects were also seen with LTE EMF exposure."

"The power spectrum and the interhemispheric coherence did not differ significantly over sub2 to sub5. Thus, the observed effect did not change with the exposure time and the effect was therefore not developing. The reduction in alpha band activity has been associated with a decrease in individual information-processing ability, alertness, and cognitive performance. The decrease in beta band activity could be interpreted as decreased alertness, arousal, and excitement or a low level of fatigue. Notably, EEG power fluctuation was not in one-one correspondence with the change in behavioral/cognitive performance which should be evaluated by specifically designed experiments as the report by Haarala et al. No conclusion could be obtained by our study that the present EMF exposure affected the subjects’ cognitive abilities."

"This work studied EEG changes caused by LTE EMF exposure. An exposure system with a fixed power incident to a radiation dipole was used; this simulation demonstrated that the SAR was within the safety limits. LTE EMF exposure modulated the EEG in the alpha and beta bands at the frontal region of the near and remote sides, and at the temporal region on the near side. No developing effect was found in the periods during and after the exposure. Our results agreed to some extent with those of our previous fMRI study on LTE exposure. Our finding indicated that the LTE EMF exposure with the intensity beneath the safety limits could modulate the brain activities."

"Future studies should focus on the correlation of EEG changes with spatial SAR distribution. By taking individual anatomical structure into consideration, a precise dose-effect relationship can be established. EEG changes with a finer temporal resolution during the exposure session should also be evaluated."


--

The alteration of spontaneous low frequency oscillations caused by acute electromagnetic fields exposure

Lv B, Chen Z, Wu T, et al. The alteration of spontaneous low frequency oscillations caused by acute electromagnetic fields exposure. Clin Neurophysiol. 2014;125:277-286.

Abstract

OBJECTIVE: The motivation of this study is to evaluate the possible alteration of regional resting state brain activity induced by the acute radiofrequency electromagnetic field (RF-EMF) exposure (30 minutes) of Long Term Evolution (LTE) signal.


METHODS: We designed a controllable near-field LTE RF-EMF exposure environment. Eighteen subjects participated in a double-blind, crossover, randomized and counterbalanced experiment including two sessions (real and sham exposure). The radiation source was close to the right ear. Then the resting state fMRI signals of human brain were collected before and after the exposure in both sessions. We measured the amplitude of low frequency fluctuation (ALFF) and fractional ALFF (fALFF) to characterize the spontaneous brain activity.

RESULTS: We found the decreased ALFF value around in left superior temporal gyrus, left middle temporal gyrus, right superior temporal gyrus, right medial frontal gyrus and right paracentral lobule after the real exposure. And the decreased fALFF value was also detected in right medial frontal gyrus and right paracentral lobule.

CONCLUSIONS: The study provided the evidences that 30 minute LTE RF-EMF exposure modulated the spontaneous low frequency fluctuations in some brain regions.

SIGNIFICANCE: With resting state fMRI, we found the alteration of spontaneous low frequency fluctuations induced by the acute LTE RF-EMF exposure.

https://www.ncbi.nlm.nih.gov/pubmed/24012322

Monday, September 18, 2023

Recent Research on Wireless Radiation and Electromagnetic Fields

I have been circulating abstracts of newly-published scientific papers on radio frequency and other non-ionizing electromagnetic fields (EMF) monthly since 2016. The complete collection contains more than 1,900 abstracts and links to more than 2,000 papers. Several hundred EMF scientists around the world receive these updates.

To download Volume 2 which contains abstracts of papers published since 2021
(including the new papers listed below) click on the following link (792 page pdf):

To download Volume 1 which contains abstracts of papers published from 2016 through 2020
click on the following link (875 page pdf):

The abstracts for recently published papers appear below.


The European Union assessments of radiofrequency radiation health risks – another hard nut to crack (Review)

Nyberg R, McCredden J, Hardell L. The European Union assessments of radiofrequency radiation health risks – another hard nut to crack (Review). Reviews on Environmental Health. 2023. doi: 10.1515/reveh-2023-0046.

Abstract

In 2017 an article was published on the unwillingness of the WHO to acknowledge the health effects associated with the use of wireless phones. It was thus stated that the WHO is ‘A Hard Nut to Crack’. Since then, there has been no progress, and history seems to be repeating in that the European Union (EU) is following in the blind man’s footsteps created by the WHO. Despite increasing evidence of serious negative effects from radiofrequency radiation on human health and the environment, the EU has not acknowledged that there are any risks. Since September 2017, seven appeals by scientists and medical doctors have been sent to the EU requesting a halt to the roll-out of the fifth generation of wireless communication (5G). The millimeter waves (MMW) and complex waveforms of 5G contribute massively harmful additions to existing planetary electromagnetic pollution. Fundamental rights and EU primary law make it mandatory for the EU to protect the population, especially children, from all kinds of harmful health effects of wireless technology. However, several experts associated with the WHO and the EU have conflicts of interest due to their ties to industry. The subsequent prioritizing of economic interests is resulting in human and planetary health being compromised. Experts must make an unbiased evaluation with no conflicts of interest. The seven appeals to the EU have included requests for immediate protective action, which have been ignored. On the issue of wireless radiation and the health of citizens, the EU seems to be another hard nut to crack.
Section headings
  • Introduction
  • ICNIRP guidelines are an inadequate basis for EU policy
  • Evidence of harm from wireless EMF provided to EU
  • Complex real-world exposures not addressed by ICNIRP
  • 5G science consistent with previous wireless EMF science, warning the EU of harm
  • Conflicts of interests in ICNIRP and SCENIHR
  • SCHEER is misleading EU
  • EU is condoning an unethical mass experiment
  • Safe, energy efficient alternatives exist
  • Smart utility meters need to be wired
  • EU Green Deal compromised by wireless deployment
  • Fundamental rights, new policy needed
  • Towards a health protective and energy saving EU policy
  • Concluding remarks
"In 2017 an article was published on the lack of WHO willingness to acknowledge health effects from use of wireless phones. It was stated that WHO is a hard nut to crack [69]. This statement now seems to be true of the EU. In spite of being provided with increasing evidence of the negative effects on human health, no measures have been taken to reduce exposure or to educate people on the risks. On the contrary, ambient exposure has increased [103]. Protests and comments by scientific experts and several organisations including non-governmental organization (NGOs) have been ignored. Instead, the EU has heeded only the opinions of a handful of experts, associated with WHO, ICNIRP, and SCHEER, with conflicts of interest due to ties with industry. Therefore, any opinion these “experts” may give on wireless EMF and human health is compromised. It is urgent that unbiased evaluations of risks be made by experts with no conflicts of interest. In spite of thousands of scientific reports proving harmful effects of wireless EMF, all seven appeals sent to the EU since 2017 have been neglected. These reviews have requested immediate action from the EU on its mandated responsibilities; i.e., to protect humans and the environment instead of promoting industry interests."


--

Effects of Radiofrequency Electromagnetic Field (RF-EMF) exposure on pregnancy and birth outcomes: A systematic review of experimental studies on non-human mammals

My note: This paper (SR4: Adverse reproductive outcomes (animal and in vitro studies)), the first of ten systematic reviews commissioned by the World Health Organization (WHO) was published online in a forthcoming special issue, "WHO assessment of health effects of exposure to radiofrequency electromagnetic fields: systematic reviews," of the journal Environment International. These reviews will form the basis of a forthcoming WHO publication: Environmental Health Criteria (EHC) Monograph on Radio Frequency (RF) Fields and Health Risks. For more information about the monograph see https://bit.ly/WHOicnirp

Cordelli E, Ardoino L, Benassi B, Consales C, Eleuteri P, Marino C, Sciortino M, Villani P, Brinkworth MH, Chen G, McNamee JP, Wood AW, Belackova L, Verbeek J, Pacchierotti F. Effects of Radiofrequency Electromagnetic Field (RF-EMF) exposure on pregnancy and birth outcomes: A systematic review of experimental studies on non-human mammals, Environment International, 2023, doi: 10.1016/j.envint.2023.108178.

Abstract

Background  The World Health Organization is coordinating an international project aimed at systematically reviewing the evidence regarding the association between radiofrequency electromagnetic field (RF-EMF) exposure and adverse health effects. Within the project, 6 topics have been prioritized by an expert group, which include reproductive health outcomes.

Objectives  According to the protocol published in 2021, a systematic review and meta-analyses on the adverse effects of RF-EMF exposure during pregnancy in offspring of experimental animals were conducted.

Methods Three electronic databases (PubMed, Scopus and EMF Portal) were last searched on September 8 or 17, 2022. Based on predefined selection criteria, the obtained references were screened by two independent reviewers.

Studies were included if they met the following criteria:
1) original, sham controlled experimental study on non-human mammals exposed in utero, published in peer-reviewed journals, 
2) the experimental RF-EMF exposure was within the frequency range 100 kHz-300 GHz, 
3) the effects of RF-EMF exposure on fecundity (litter size, embryonic/fetal losses), on the offspring health at birth (decrease of weight or length, congenital malformations, changes of sex ratio) or on delayed effects (neurocognitive alterations, female infertility or early-onset cancer) were studied. 

Study characteristics and outcome data were extracted by two reviewers. Risk of bias (RoB) was assessed using the Office of Health Assessment and Translation (OHAT) guidelines. Study results were pooled in a random effects meta-analysis comparing average exposure to no-exposure and in a dose-response meta-analysis using all exposure doses, after exclusion of studies that were rated at “high concern” for RoB. Subgroup analyses were conducted for species, Specific Absorption Rate (SAR) and temperature increase. The certainty of the evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach.

Results

Eighty-eight papers could be included in this review. 

Effects on fecundity. The meta-analysis of studies on litter size, conducted at a whole-body average SAR of 4.92 W/kg, did not show an effect of RF-EMF exposure (MD 0.05; 95% CI -0.21 to 0.30). The meta-analysis of studies on resorbed and dead fetuses, conducted at a whole-body average SAR of 20.26 W/kg, showed a significant increase of the incidence in RF-EMF exposed animals (OR 1.84; 95% CI 1.27 to 2.66). The results were similar in the dose-response analysis. 

Effects on the offspring health at birth. The meta-analysis of studies on fetal weight, conducted at a whole-body average SAR of 9.83 W/kg, showed a small decrease in RF-EMF exposed animals (SMD 0.31; 95% CI 0.15 to 0.48). The meta-analysis of studies on fetal length, conducted at a whole-body average SAR of 4.55 W/kg, showed a moderate decrease in length at birth (SMD 0.45; 95% CI 0.07 to 0.83). The meta-analysis of studies on the percentage of fetuses with malformations, conducted at a whole-body average SAR of 6.75 W/kg, showed a moderate increase in RF-EMF exposed animals (SMD -0.45; 95% CI -0.68 to -0.23). The meta-analysis of studies on the incidence of litters with malformed fetuses, conducted at a whole-body average SAR of 16.63 W/kg, showed a statistically significant detrimental RF-EMF effect (OR 3.22; 95% CI 1.9 to 5.46). The results were similar in the dose-response analyses. 

Delayed effects on the offspring health. RF-EMF exposure was not associated with detrimental effects on brain weight (SMD 0.10, 95% CI -0.09 to 0.29) and on learning and memory functions (SMD -0.54, 95% CI -1.24 to 0.17). RF-EMF exposure was associated with a large detrimental effect on motor activity functions (SMD 0.79, 95% CI 0.21 to 1.38) and a moderate detrimental effect on motor and sensory functions (SMD -0.66, 95% CI -1.18 to -0.14). RF-EMF exposure was not associated with a decrease of the size of litters conceived by F2 female offspring (SMD 0.08, 95% CI -0.39 to 0.55). Notably, meta-analyses of neurobehavioural effects were based on few studies, which suffered of lack of independent replication deriving from only few laboratories.

Discussion  

There was high certainty in the evidence for a lack of association of RF-EMF exposure with litter size. We attributed a moderate certainty to the evidence of a small detrimental effect on fetal weight. We also attributed a moderate certainty to the evidence of a lack of delayed effects on the offspring brain weight. For most of the other endpoints assessed by the meta-analyses detrimental RF-EMF effects were shown, however the evidence was attributed a low or very low certainty. The body of evidence had limitations that did not allow an assessment of whether RF-EMF may affect pregnancy outcomes at exposure levels below those eliciting a well-known adverse heating impact. In conclusion, in utero RF-EMF exposure does not have a detrimental effect on fecundity and likely affects offspring health at birth, based on the meta-analysis of studies in experimental mammals on litter size and fetal weight, respectively. Regarding possible delayed effects of in utero exposure, RF-EMF probably does not affect offspring brain weight and may not decrease female offspring fertility; on the other hand, RF-EMF may have a detrimental impact on neurobehavioural functions, varying in magnitude for different endpoints, but these last findings are very uncertain. Further research is needed on the effects at birth and delayed effects with sample sizes adequate for detecting a small effect. Future studies should use standardized endpoints for testing prenatal developmental toxicity and developmental neurotoxicity (OECD TG 414 and 426), improve the description of the exposure system design and exposure conditions, conduct appropriate dosimetry characterization, blind endpoint analysis and include several exposure levels to better enable the assessment of a dose response relationship. 

Study selection

Figure 2 shows the flow diagram from the initially retrieved references to the finally included papers, as per the PRISMA 2020 template (Page et al., 2021). After exclusion of duplicate records and of papers deemed not eligible based on title/abstract, a total of 236 papers remained for full-text assessment; we could not retrieve 11 papers and were unable to translate 10 papers. Of the remaining 215 papers, we excluded 127 after reading the full text. Therefore, the systematic review is based on a total of 88 papers.

Implications for policy and research

This systematic review of animal studies shows that RF-EMF exposure does not affect fecundity and likely has only a small effect on fetal weight decrease. However, some studies retrieved by the literature search that showed a detrimental effect on the incidence of dead/resorbed fetuses or the increase of malformations at high exposure levels, largely exceeding the current human exposure limits, cannot be discounted. These studies confirm what is known about the harmful effect of heating on fetuses, but they leave largely uncertain the possibility of RF-EMF effects at lower exposure levels, closer to relevant human exposure levels. Currently, it remains difficult to determine the exposure levels at which RF-EMF can start to affect fecundity or offspring health at birth. The whole body average SAR values in the included experiments are well above the recommended human exposure limit values for the general public set by international bodies (ICNIRP 2020). Actual SAR values experienced by the public in the general environment are below, and in most cases, well below, the recommended human exposure limit values. The dose effect meta-analyses contributed to support the results of the meta-analysis but were not supposed to define the shape of the dose-effect relationship or find a minimum exposure level at which a clear effect could be discerned.

For two endpoints planned in the protocol, namely ano-genital distance at birth and early-onset cancer no studies were retrieved. Ano-genital distance is a well-known developmental biomarker associated with impairment of the reproductive system and exposure to environmental carcinogens during pregnancy have been linked with development of childhood cancer (Botsivali and Kyrtopoulos, 2019). Hopefully, future research will shed light on the impact of RF-EMF exposure on these outcomes.

As a whole, the possible impact of in utero RF-EMF exposure remains uncertain due to the severe limitations of some of the studies. In particular, during the systematic review, we identified several methodological limitations in the studies that should be overcome in future studies to improve the quality of the research. Blinding during experiment performance and outcome assessment should always be applied to minimize bias. More adherence to OECD Test Guideline 414 “Prenatal Developmental Toxicity study” and 426 “Developmental Neurotoxicity Study” is recommended together with a more standardized approach for reporting results. A large proportion of included studies was rated at either “some” or “high concern” for RoB for exposure characterisation or temperature rise assessment and some others had to be excluded from the systematic review because they did not reach a minimum quality standard for these aspects. We would recommend that future studies bear the reasons for exclusion or RoB concerns in mind in study design and implementation. There are several papers in the research literature with recommendations on how exposure characterisation concerns can be mitigated, for example Kuster and Schönborn (2000). Finally, studies investigating not just a single level but several exposure levels, spanning from low levels comparable to human exposure to higher levels where mild hyperthermic effects could be expected, should be conducted under the same experimental conditions.

In spite of the large number of studies collected, our systematic review could only partly answer the PECO question and did not provide conclusions certain enough to inform decisions at a regulatory level, but it can be considered a solid starting point to direct future research on this topic.

Open access paper: https://www.sciencedirect.com/science/article/pii/S0160412023004518

--

Interaction of Millimetre Waves Used in 5G Network with Cells and Tissues of Head-and-Neck Region: A Literature Review

Dagli N, Dagli R, Thangavelu L. Interaction of Millimetre Waves Used in 5G Network with Cells and Tissues of Head-and-Neck Region: A Literature Review. Advances in Human Biology 13(2):p 168-176, Apr–Jun 2023. | DOI: 10.4103/aihb.aihb_133_22 .

Abstract

Fifth-generation mobile technology is supposed to revolutionise the world. It has many features which can benefit humankind, but at the same time, it will expose us to much radiation. Therefore, we need to understand the importance and ill effects of 5 G technology. An online literature search was conducted through PubMed and Scopus databases from April 2021 to May 2021, using the Boolean operators OR, AND and NOT and the keywords ‘5G Network’, ‘Human tissues’, and ‘Animal tissues’. The literature is very scarce in studies on the effects of millimetre waves on various tissues. A total of 1269 studies were identified, and 24 were selected for qualitative evidence synthesis. Randomised control trials, laboratory studies, in-vitro studies, in-vivo studies and ex-vivo studies were included. Data from the studies were collected using the data extraction form, and all the relevant information was summarized. Five of 24 studies were done on animals, four on humans, five on models, and ten on various cells. Ten of 24 studies demonstrated the harmful effects of millimetre waves. Results are ambivalent, and no association is found between particular frequency and impact on tissue, animals or humans. Pathophysiological effects observed in most studies were mild, reversible, and limited to the cellular level. Available evidence reported temperature rise after millimetre wave exposure, which was within safety limits. Any biological impact on a cellular level noticed due to radiation’s thermal effects were insignificant and did not affect the organ level. However, only a few studies have mentioned non-thermal impact, but those effects should not be overlooked. Clinical trials on a large population and for a longer duration are required to establish the safety of millimetre waves before deploying a 5G network worldwide.

Conclusion

Very few studies published related to the effects of millimetre waves on various tissues. Therefore, it is very difficult to reach a clear conclusion. Available evidence suggests that heating effects in tissues due to MMW exposure cause temperature rise. However, the temperature rise was found to be within safety limits for the short duration of exposure, but biological effects on the cellular level were observed in a few studies. It is unclear how these changes will affect organs or individuals when the population is exposed to radiation continuously for a lifetime. Very few studies have shown harmful non-thermal effects too. These effects should not be overlooked. Special attention should be paid to the tissues of the head and neck region as they are in close proximity to electromagnetic devices. More research is required to confirm those findings and the chronic thermal and non-thermal effects of MMW and to establish safety before the deployment of 5G networks all over the world. Technological advancement is necessary for human race development but not at the cost of our health. We need to limit the use of certain frequencies at workplaces where a high amount of data is required to be transferred at high speed and find the safest frequency for widespread use so that our environment and the next generations can be protected from hazardous effects.

Future study recommendation

Very few studies have been done on the effects of millimetre waves on humans. Clinical trials on a large population and for longer duration are required to establish the safety of millimetre waves before the 5G network roll out all over the world. The effect of other environmental toxic stimuli should be considered while studying the effect of MMW. Other factors that affect the absorption of MMW, such as the shadowing effect, reflection from surrounding tissues, angle of a screen of a device, thickness of skin and the water content of the skin should be considered.


--

The effect of 5G wireless communication standard on adults and children

Tatarinchik AA. The effect of 5G wireless communication standard on adults and children. Russian Bulletin of Hygiene. July 2023. doi: 10.24075/rbh.2023.073.

Abstract

Introduction of the fifth-generation wireless networks (5G) will increase the number of 5G base stations and 5G-enabled devices. This review sought to find the answer to the key question: can such devices be harmful? The review covers scientific data published from 2009 to 2022 and available at eLibrary, PubMed, Google Scholar, Cyberleninka. We investigated the problems of definition, regulation, accumulation of data on 5G networks, and summarized the papers reporting how electromagnetic fields in 5G frequency bands affect adults and children. Despite the large amount of contradictory data, the available studies do not provide adequate information that could enable a meaningful assessment of the safety of 5G networks.

Open access paper: https://rbh.rsmu.press/archive/2023/3/1/content?lang=en

--

Where is your smartphone? An unusual mass within the tensor fasciae latae muscle

Minoretti P, Lahmar A, Emanuele E. Where is your smartphone? An unusual mass within the tensor fasciae latae muscle. Radiol Case Rep. 2023;18(11):3984-3987. Published 2023 Aug 31. doi:10.1016/j.radcr.2023.08.079

Abstract

We report a case of a 40-year-old Italian man presenting with an intramuscular schwannoma in his left thigh, which coincided with the area where he habitually stored his smartphone (front left trouser pocket). An ultrasound examination revealed a well-defined, encapsulated, hypoechoic lesion (41 × 15 × 28 mm) within the muscle, showing multiple small foci of vascularity on color Doppler. Elastographic analysis indicated a deformability score of 2, with some areas of stiffness. Magnetic resonance imaging confirmed the presence of a spindle-shaped mass in the tensor fasciae latae muscle, with varying enhancement after contrast administration. Notably, the location of the intramuscular mass closely corresponded to the placement of the phone's SIM card. While we cannot establish a definitive causal relationship between the patient's smartphone storage habit and the development of the intramuscular schwannoma, we speculate that the habitual storage location may have potentially acted as a risk or predisposing factor. This case underscores the need for further research on the potential health risks associated with smartphone storage habits, considering their widespread prevalence in today's society.

Open access paper: https://www.sciencedirect.com/science/article/pii/S1930043323005927?via%3Dihub

--

In vitro exposure of neuronal networks to the 5G-3.5 GHz signal

Canovi A, Orlacchio R, Poulletier de Gannes F, et al. In vitro exposure of neuronal networks to the 5G-3.5 GHz signal. Front Public Health. 2023;11:1231360. Published 2023 Aug 7. doi:10.3389/fpubh.2023.1231360

Abstract

Introduction: The current deployment of the fifth generation (5G) of wireless communications raises new questions about the potential health effects of exposure to radiofrequency (RF) fields. So far, most of the established biological effects of RF have been known to be caused by heating. We previously reported inhibition of the spontaneous electrical activity of neuronal networks in vitro when exposed to 1.8 GHz signals at specific absorption rates (SAR) well above the guidelines. The present study aimed to assess the effects of RF fields at 3.5 GHz, one of the frequencies related to 5G, on neuronal activity in-vitro. Potential differences in the effects elicited by continuous-wave (CW) and 5G-modulated signals were also investigated.

Methods: Spontaneous activity of neuronal cultures from embryonic cortices was recorded using 60-electrode multi-electrode arrays (MEAs) between 17 and 27 days in vitro. The neuronal cultures were subjected to 15 min RF exposures at SAR of 1, 3, and 28 W/kg.

Results: At SAR close to the guidelines (1 and 3 W/kg), we found no conclusive evidence that 3.5 GHz RF exposure impacts the activity of neurons in vitro. On the contrary, CW and 5G-modulated signals elicited a clear decrease in bursting and total firing rates during RF exposure at high SAR levels (28 W/kg). Our experimental findings extend our previous results, showing that RF, at 1.8 to 3.5 GHz, inhibits the electrical activity of neurons in vitro at levels above environmental standards.

Excerpts

Dissociated primary cortical neurons were isolated from the cortex of embryonic (E18–E19) Sprague–Dawley rats (Janvier-Labs, Saint-Berthevin, France) as described in Moretti et al. (7) ....

The RF generation unit was located outside the incubator (Figure 1A) and consisted of (i) an RF signal generator (SMBV100A, Rohde & Schwarz) used to generate either CW or 5G-modulated signal at 3.5 GHz, ... The 3.5 GHz 5G signal used corresponds to 5G NR (release 15, Digital Standards SMBVB-K444, Rohde & Schwarz) with FDD duplexing, QPSK modulation and 100 MHz channel bandwidth. The signal was led to the TEM cell through a 1.5 m coaxial precision test cable (CBL-1.5 m-SMNM+, Mini-circuits, United States; 1.2 dB insertion loss at 3.5 GHz) and SMA connectors....

In conclusion, we have given here experimental evidence that RF exposure of cultured cortical neurons at 3.5 GHz CW or 5G-modulated signals at 28 W/kg induces a decrease in total firing and bursting activities. The threshold for such inhibitory effect exceeds the maximal SAR recommended by ICNIRP for human exposure (1). Considering the studies mentioned above, we may hypothesize that the rate of the temperature rise plays an important role in eliciting specific cellular responses. Further studies are needed to elucidate the role of temperature rate and thus investigate the mechanism underlying these observations.

Misinterpretations in inferences on the causal contribution of cell phones to brain tumour incidence in South Korea: Response to Moon (2023)

de Vocht F. Misinterpretations in inferences on the causal contribution of cell phones to brain tumour incidence in South Korea: Response to Moon (2023). Environ Res. 2023 Aug 3;236(Pt 2):116813. doi: 10.1016/j.envres.2023.116813.

--

Safety Assessment and Uncertainty Quantification of Electromagnetic Radiation from Mobile Phones to the Human Head

Yi M, Wu B, Zhao Y, Su T, Chi Y. Safety Assessment and Uncertainty Quantification of Electromagnetic Radiation from Mobile Phones to the Human Head. Applied Sciences. 2023; 13(14):8107. https://doi.org/10.3390/app13148107.

Abstract

With the rapid development of the mobile communication technology, the design of mobile phones has become more complex, and research on the electromagnetic radiation from mobile phones that reaches the human head has become important. Therefore, first of all, a model of mobile phone daily use was established. Then, based on the established simulation model, the safety of human head exposure to mobile phones was evaluated. The generalized polynomial chaos (gPC) method was used to establish a proxy model of the specific absorption rate (SAR) of the human head at different frequencies to perform a parameter uncertainty quantification (UQ). Finally, the Sobol method was used to quantify the influence of relevant variables on the SAR. The simulation results showed that the gPC method can save time and cost while ensuring accuracy, and the SAR value is greatly influenced by the electromagnetic materials of the mobile phone shell. Combined with the above analysis, this paper can provide reasonable suggestions for the design of mobile phone electromagnetic materials.


--

An Exposimetric Electromagnetic Comparison of Mobile Phone Emissions: 5G versus 4G Signals Analyses by Means of Statistics and Convolutional Neural Networks Classification

Miclaus S, Deaconescu DB, Vatamanu D, Buda AM. An Exposimetric Electromagnetic Comparison of Mobile Phone Emissions: 5G versus 4G Signals Analyses by Means of Statistics and Convolutional Neural Networks Classification. Technologies. 2023; 11(5):113. doi:10.3390/technologies11050113.

Abstract

To gain a deeper understanding of the hotly contested topic of the non-thermal biological effects of microwaves, new metrics and methodologies need to be adopted. The direction proposed in the current work, which includes peak exposure analysis and not just time-averaged analysis, aligns well with this objective. The proposed methodology is not intended to facilitate a comparison of the general characteristics between 4G and 5G mobile communication signals. Instead, its purpose is to provide a means for analyzing specific real-life exposure conditions that may vary based on multiple parameters. A differentiation based on amplitude-time features of the 4G versus 5G signals is followed, with the aim of describing the peculiarities of a user’s exposure when he runs four types of mobile applications on his mobile phone on either of the two mobile networks. To achieve the goals, we used signal and spectrum analyzers with adequate real-time analysis bandwidths and statistical descriptions provided by the amplitude probability density (APD) function, the complementary cumulative distribution function (CCDF), channel power measurements, and recorded spectrogram databases. We compared the exposimetric descriptors of emissions specific to file download, file upload, Internet video streaming, and video call usage in both 4G and 5G networks based on the specific modulation and coding schemes. The highest and lowest electric field strengths measured in the air at a 10 cm distance from the phone during emissions are indicated. The power distribution functions with the highest prevalence are highlighted and commented on. Afterwards, the capability of a convolutional neural network that belongs to the family of single-shot detectors is proven to recognize and classify the emissions with a very high degree of accuracy, enabling traceability of the dynamics of human exposure.

Excerpts

Signals with high peak-to-average power ratios (PAPRs) can produce stronger electric (E)-fields in certain tissues, potentially leading to higher levels of energy absorption and increased biological effects [35]. PAPR is a measure of the amplitude variations in a signal, and it describes how much higher the peak power of a signal is compared to its average power. Signals with high PAPRs can have sharp peaks and rapid changes in amplitude, which can lead to the creation of stronger electric fields in certain tissues, such as those with high conductivity. There, the E-field generated by the signal can be much stronger than the average power would suggest. This increased E-field strength can potentially lead to increased energy absorption in these tissues, which can have biological effects [36]. It is important to note, however, that the potential biological effects of 4G and 5G signals are still the subject of ongoing research [10,37,38,39,40], and the current scientific consensus is that the levels of exposure from 5G signals are well below the safety limits set by international organizations.

The emitting phones used in the work were: (a) the iphone 14pro (model A 2890, Apple, Zhengzhou, China)—for 4G emissions; (b) the iphone 13 (model A2633, Apple, Zhengzhou, China)—for 5G-FR1 emissions....

The central frequency of the 4G uplink signal was f1 = 1.75 GHz with a bandwidth of 20 MHz, while in 5G it was f2 = 3.58 GHz with a bandwidth of 100 MHz.

Conclusions

In this present work, we aim to quantify the time variability of emissions in the proximity of a mobile phone connected to either a 4G or a 5G-FR1 network when using four different mobile applications. The central objective was to provide knowledge on human exposure dynamics that completes the dosimetric studies necessary to describe the potential biological effects.

The main contribution of this study to current knowledge belongs to the topics of the effects of EMF exposure on humans that are not limited to induced heating, while non-thermal effects remain subjects of debate and investigation. To gain a deeper understanding of this aspect, new metrics and methodologies need to be adopted. The direction proposed in this work, which includes peak exposure analysis and not just time-averaged analysis, aligns well with this goal.

A supplementary benefit is the possibility to discern between exposure dynamics corresponding to one specific mobile application based on the capability of a real-time detection algorithm to successfully classify the emission type.

The proposed methodology is not intended to facilitate a comparison of the general characteristics between 4G and 5G signals. Instead, its purpose is to provide a means for analyzing specific real-life exposure conditions that may vary based on multiple parameters.

Synthetically, our results showed that:
  • Electric field strengths in the air at 10 cm from the phone were higher for 5G-FR1 emissions than for 4G, on average by 60%. None of the values exceeded human health and safety levels. The highest difference between technologies corresponded to Internet video streaming emissions, where 5G field strength was three times higher than 4G.
  • 4G and 5G-FR1 amplitude probability density distributions differ; 4G traces depend much more on the type of mobile application used, while 5G traces are more similar one to another and more independent of the mobile application. The same probability range of power level distribution was covered by a larger window of power values in 5G than in 4G.
  • Crest factors were higher for 5G-FR1 emissions than for 4G emissions; the highest difference (almost double) evolved during file download applications, while the lowest difference was observed during Internet video streaming.
  • The prevalence of the highest power levels (superior tail emissions) appeared much more frequent for 5G-FR1 emissions than for 4G, and a difference of as much as 9.5 dB over mean power was encountered in 5G versus 4G emissions.
  • The recorded spectrograms emphasized peculiarities that have been excellently captured and valorized by the YOLO v7 deep learning algorithm. Practically, excellent recognition and classification rates were obtained for each technology and each category of mobile application with a minimum of training.
Overall, the contribution of the present approach consists in the provision of an exposimetric tool that underlines the differences in amplitude-time profiling of a user’s exposure when running various applications on the mobile phone in two different mobile communication technologies. Due to the limitations of the methodology employed, the data presented cannot be considered to be of total generality. However, realistic exposure and time-variability analysis need further investigation in varied situations.


--

Comparison of ambient radiofrequency electromagnetic field (RF-EMF) levels in outdoor areas and public transport in Switzerland in 2014 and 2021

Loizeau N, Zahner M, Schindler J, Stephan C, Fröhlich J, Gugler M, Ziegler T, Röösli M. Comparison of ambient radiofrequency electromagnetic field (RF-EMF) levels in outdoor areas and public transport in Switzerland in 2014 and 2021. Environ Res. 2023 Aug 19;237(Pt 1):116921. doi: 10.1016/j.envres.2023.116921.

Abstract

Mobile communication technology has evolved rapidly over the last ten years with a drastic increase in wireless data traffic and the deployment of new telecommunication technologies. The aim of this study was to evaluate the ambient radiofrequency electromagnetic field (RF-EMF) levels and temporal changes in various microenvironments in Switzerland in 2014 and 2021. We measured the ambient RF-EMF levels in V/m in the same 49 outdoor areas and in public transport in 2014 and 2021 using portable RF-EMF exposure meters carried in a backpack. The areas were selected to represent some typical types of microenvironments (e.g. urban city centres, suburban and rural areas). We calculated the summary statistics (mean, percentiles) in mW/m2 and converted back to V/m for each microenvironment. We evaluated the distribution and the variability of the ambient RF-EMF levels per microenvironment types in 2021. Finally, we compared the ambient RF-EMF mean levels in 2014 and 2021 using multilevel regression modelling. In outdoor areas, the average ambient RF-EMF mean levels per microenvironment in 2021 ranged from 0.19 V/m in rural areas to 0.43 V/m in industrial areas (overall mean: 0.27 V/m). In public transports, the mean levels were 0.27 V/m in buses, 0.33 V/m in trains and 0.36 V/m in trams. In 2021, mean levels across all outdoor areas were -0.022 V/m lower (95% confidence interval: -0.072, 0.030) than in 2014. Results from our comprehensive measurement study across Switzerland suggest that RF-EMF levels in public places have not significantly changed between 2014 and 2021 despite an 18-fold increase in mobile data transmission during that period. The absence of temporal changes may be owed to the shift to newer mobile communication technologies, which are more efficient.


--

Occupational Exposure to Electromagnetic Fields-Different from General Public Exposure and Laboratory Studies

Hansson Mild K, Mattsson MO, Jeschke P, Israel M, Ivanova M, Shalamanova T. Occupational Exposure to Electromagnetic Fields-Different from General Public Exposure and Laboratory Studies. Int J Environ Res Public Health. 2023 Aug 9;20(16):6552. doi: 10.3390/ijerph20166552.

Abstract

The designs of in vivo, in vitro and in silico studies do not adequately reflect the characteristics of long-term occupational EMF exposure; the higher exposure levels permitted for employees are nevertheless extrapolated on this basis. Epidemiological studies consider occupational exposure only in a very general way, if at all. There is a lack of detailed descriptive data on long-term occupational exposure over the duration of the working life. Most studies reflect exposure characteristics of the general population, exposures which are long-term, but at a comparably low level. Occupational exposure is often intermittent with high peak power followed by periods with no exposure. Furthermore, the EU EMF-Directive 2013/35/EU states a demand for occupational health surveillance, the outcome of which would be of great help to epidemiologists studying the health effects of EMF exposure. This paper thus aims to outline and specify differences between public and occupational exposure and to increase the understanding of specific aspects of occupational exposure which are important for long-term health considerations. This could lead to a future protection concept against possible hazards based on adequate descriptions of long-term exposures and also include supplementary descriptive features such as a "reset time" of biological systems and accurate dose quantities.

Conclusions

Knowledge about the possible effects of EMF on occupational safety and health is primarily obtained from research on general public exposure conditions. Thus, experts on occupational safety and health in competent authorities may from time to time face relevant questions where answers are not based on a satisfactory knowledge fundament.

The purpose of writing this article has been to provide arguments why science needs study designs which differentiate clearly between both the general public and the workers’ domain. To facilitate such a process, exposure patterns of both domains were introduced and evaluated, followed by physical and biological explanations referring to time-related exposure quantities for non-ionizing radiation protection. There are many observed, and potentially relevant, biological effects noted after exposures to both electric, magnetic and electromagnetic fields, where findings related to oxidative stress mechanisms have received particular attention [57,58]. Such findings have raised the awareness for time-related constants on the molecular and cellular levels of biological systems. However, it remains to be seen if biological effects on such a “micro” level will result in manifested health effects on a “macro” level organism. To monitor those health effects, workers need to be subjected to continuous health surveillance. And another question must be considered: which adequate genetic, blood, or, e.g., MRI or other diagnostic markers are most appropriate to be included in such a surveillance?

To tackle the above research aspects and questions as well as to promote further research into EMF at the workplace, researchers need sufficient funding and international collaboration. What is required is a new research framework with an emphasis on occupational EMF exposure at the scale of the Horizon Europe projects to spark basic and applied research with a broad focus on frequency ranges and EMF sources, exposure characteristics, as well as interaction and repair mechanisms on micro-, meso-, and macro-levels. Let us get started.


--

A Survey on EMF-Aware Mobile Network Planning

Faye S, et al. A Survey on EMF-Aware Mobile Network Planning. IEEE Access, doi: 10.1109/ACCESS.2023.3297098.

Abstract

Considering electromagnetic field (EMF) exposure from the radio frequency (RF) domain has always been critical in deploying new cellular network technologies. European countries implement strict limits to ensure that a radiating element such as a cellular antenna cannot exceed a certain threshold in the vicinity of urban or densely populated areas. Before 5G, these limits could easily be managed with calculation methods during the network planning phase, i.e., before the physical installation of antennas. These previous-generation transmitters act statically, and it is usually simple to respect EMF limit values while ensuring adequate quality performance for end-users. Current active antenna systems benefit from Massive MIMO (Multiple Input, Multiple Output) technologies with precise beamforming and Time Division Duplex (TDD). These technologies employed by 5G enable antennas to behave dynamically in time and space, depending on the distribution of users and the applications targeted. This new dynamic behaviour, together with larger antenna arrays, makes the estimation of RF-EMFs more complex, leading to overestimations. The only solution to lower RF-EMFs and make an installation compliant is to lower the output power, which potentially limits the performance of current 5G networks. In the future, as new frequencies and multiple deployment points emerge, this exposure overestimation, associated to strict regulations, could drastically restrict or even prevent the deployment of new communication technologies. This survey provides an overview of this broad area, looking at the global and European regulatory frameworks and then taking the case of Luxembourg, which has lower limits than most EU countries. It then references the main EMF exposure estimation methods available in the literature applied for 4G and prior generations before focusing on potential and not yet standardised approaches for 5G. The perspective is then changed to discuss the issues related to network planning and the interest in using optimisation approaches. Finally, the survey concludes by summarising the gaps and opportunities related to EMF-aware network planning solutions.


--

Measurement and risk perception of non-ionizing radiation from base transceiver stations in Dhaka City of Bangladesh

Islam MS, Pal A, Noor MS, Sazzad IU. Measurement and risk perception of non-ionizing radiation from base transceiver stations in Dhaka City of Bangladesh. Environ Monit Assess. 2023 Sep 12;195(10):1190. doi: 10.1007/s10661-023-11812-7.

Abstract

Multiple harmful health effects can have on the population from non-ionizing radiation (NIR) sources. To date, there has been no extensive data collection about NIR emitted from base transceiver stations in Dhaka City, Bangladesh. This study aims to remedy that by collecting data and comparing the processed data to the international standards, International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines, and standards of other countries. For this, measurement data were collected from 361 different publicly accessible locations in Dhaka City applying a convenience sampling approach. The measured average electric field exceeded the 1800 MHz threshold values of 36.84, 33.5, and 7.5% of the time compared with the thresholds of China, India, and Japan, respectively, followed by the measured average electromagnetic field values, which were 57, 52, and 29%, respectively. No exceedance was seen for radiofrequency power flux for the investigated countries. Approximately 35% of the calculated average specific energy absorption rate values exceeded the ICNIRP recommended public exposure limit of 0.08 W/kg. Based on this data, it is suggested that detailed NIR exposure regulations need to be created and proper oversight and enforcement over operators are required to avoid potential health effects.


--

Community engagement programs on radiation and health: addressing public concerns

Brzozek C, Karipidis K. Community engagement programs on radiation and health: addressing public concerns. Public Health Res Pract. 2023 Sep 13;33(3):3332325. doi: 10.17061/phrpp3332325.

Abstract

Objective: Due to the negative connotations around radiation, there is a great deal of angst in the community regarding radiation exposure and health; especially electromagnetic radiation (EMR) sources such as powerlines, mobile phone towers and the rollout of the 5G network. As such, it is important for health authorities to provide the public with information and assurances regarding radiation safety. The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) set up community engagement programs to address community concerns. Type of program or service: From 2003 until April 2022, ARPANSA operated a Health Complaints Register, which collected reports of health complaints from members of the public related to possible EMR exposures.

Methods: Collected data was used to produce annual statistical summaries on the nature and level of complaints received. Since 2016, ARPANSA has also run the Talk to a Scientist program, which allows the public to communicate directly with scientists on issues about radiation exposure, health and protection in Australia. Data is collected on the type of radiation and radiation source.

Results: There was a low level of interest in the Register, with only 180 reports received over the duration of its operation. Smart meters were the most common source of EMR exposure reported to be responsible for adverse health effects. The most common adverse health effect reported was headaches. The Register was closed in April 2022 due to a lack of interest. In contrast, the Talk to a Scientist program has responded to 6546 enquiries since 2016, most of which have been on EMR sources and the success of the Talk to a Scientist program, which rendered the Register obsolete.

Lessons learnt: The EMR Health Complaints Register never received much interest from the public, potentially due to a perceived lack of engagement with authorities. The Talk to a Scientist program, which facilitated direct interaction with subject matter experts, has been much more successful in engaging with the public and addressing community concerns on radiation safety.

Conflict of interest statement

As part of their employment at ARPANSA, KK and CB are involved in providing advice to the Australian Government, Australian states and territories and the general public on the effects and risks of exposure to ionising and non-ionising radiation. KK is a member of the International Commission on Non-Ionizing Radiation Protection, an independent body that sets guidelines for non-ionising radition protection and contributes to developing and disseminating science-based advice on limiting exposure to non-ionising radiation.


Computational modeling of the variation of the transmembrane potential of the endothelial cells of the blood-brain barrier subject to an external electric field

Sehati M, Rafii-Tabar H, Sasanpour P. Computational modeling of the variation of the transmembrane potential of the endothelial cells of the blood-brain barrier subject to an external electric field. 2023. Biomed Phys Eng Express. 2023;10.1088/2057-1976/acf937. doi:10.1088/2057-1976/acf937.

Abstract

The electromechanical properties of the membrane of endothelial cells forming the blood-brain barrier play a vital role in the function of this barrier. The mechanical effect exerted by external electric fields on the membrane could change its electrical properties. In this study the effect of extremely low frequency (ELF) external electric fields on the electrical activity of these cells has been studied by considering the mechanical effect of these fields on the capacitance of the membrane. The effect of time-dependent capacitance of the membrane is incorporated in the current components of the parallel conductance model for the electrical activity of the cells. The results show that the application of ELF electric fields induces hyperpolarization, having an indirect effect on the release of nitric oxide from the endothelial cell and the polymerization of actin filaments. Accordingly, this could play an important role in the permeability of the barrier. Our finding can have possible consequences in the field of drug delivery into the central nervous system.


--

Quantitative proteomics reveals effects of environmental radiofrequency electromagnetic fields on embryonic neural stem cells

An G, Jing Y, Zhao T, Zhang W, Guo L, Guo J, Miao X, Xing J, Li J, Liu J, Ding G. Quantitative proteomics reveals effects of environmental radiofrequency electromagnetic fields on embryonic neural stem cells. Electromagn Biol Med. 2023 Aug 7:1-10. doi: 10.1080/15368378.2023.2243980.

Abstract

The effects of environmental radiofrequency electromagnetic fields (RF-EMF) on embryonic neural stem cells have not been determined, particularly at the proteomic level. This study aims to elucidate the effects of environmental levels of RF-EMF radiation on embryonic neural stem cells. Neuroectodermal stem cells (NE-4C cells) were randomly divided into a sham group and an RF group, which were sham-exposed and continuously exposed to a 1950 MHz RF-EMF at 2 W/kg for 48 h. After exposure, cell proliferation was determined by a Cell Counting Kit-8 (CCK8) assay, the cell cycle distribution and apoptosis were measured by flow cytometry, protein abundance was detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and mRNA expression was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). We did not detect differences in cell proliferation, cell cycle distribution, and apoptosis between the two groups. However, we detected differences in the abundance of 23 proteins between the two groups, and some of these differences were consistent with alterations in transcript levels determined by qRT-PCR (P < 0.05). A bioinformatics analysis indicated that the differentially regulated proteins were mainly enriched in 'localization' in the cellular process category; however, no significant pathway alterations in NE-4C cells were detected. We conclude that under the experimental conditions, low-level RF-EMF exposure was not neurotoxic but could induce minor changes in the abundance of some proteins involved in neurodevelopment or brain function.


--

Impact of weak radiofrequency and static magnetic fields on key signaling molecules, intracellular pH, membrane potential, and cell growth in HT-1080 fibrosarcoma cells

Gurhan H, Barnes F. Impact of weak radiofrequency and static magnetic fields on key signaling molecules, intracellular pH, membrane potential, and cell growth in HT-1080 fibrosarcoma cells. Sci Rep. 2023;13(1):14223. Published 2023 Aug 30. doi:10.1038/s41598-023-41167-5

Abstract

There are substantial concerns that extended exposures to weak radiofrequency (RF) fields can lead to adverse health effects. In this study, HT-1080 fibrosarcoma cells were simultaneously exposed to a static magnetic flux density between 10 μT and 300 μT and RF magnetic fields with amplitudes ranging from 1 nT to 1.5 μT in the frequency range from 1.8 to 7.2 MHz for four days. Cell growth rates, intracellular pH, hydrogen peroxide, peroxynitrite, membrane potential and mitochondrial calcium were measured. Results were dependent on carrier frequency and the magnitude of the RF magnetic field, modulation frequencies and the background static magnetic field (SMF). Iron sulphur (Fe-S) clusters are essential for the generation of reactive oxygen species and reactive nitrogen species (ROS and RNS). We believe the observed changes are associated with hyperfine couplings between the chemically active electrons and nuclear spins. Controlling external magnetic fields may have important clinical implications on aging, cancer, arthritis, and Alzheimer’s.

Open access paper: https://www.nature.com/articles/s41598-023-41167-5

--

Metformin Ameliorates 2.856 GHz Microwave-Radiation-Induced Reproductive Impairments in Male Rats via Inhibition of Oxidative Stress and Apoptosis

Men J, Zhang L, Peng R, Li Y, Li M, Wang H, Zhao L, Zhang J, Wang H, Xu X, Dong J, Wang J, Yao B, Guo J. Metformin Ameliorates 2.856 GHz Microwave- Radiation-Induced Reproductive Impairments in Male Rats via Inhibition of Oxidative Stress and Apoptosis. Int J Mol Sci. 2023 Jul 31;24(15):12250. doi: 10.3390/ijms241512250.

Abstract

The reproductive system has been increasingly implicated as a sensitive target of microwave radiation. Oxidative stress plays a critical role in microwave radiation -induced reproductive damage, though precise mechanisms are obscure. Metformin, a widely used antidiabetic drug, has emerged as an efficient antioxidant against a variety of oxidative injuries. In the present study, we hypothesized that metformin can function as an antioxidant and protect the reproductive system from microwave radiation. To test this hypothesis, rats were exposed to 2.856 GHz microwave radiation for 6 weeks to simulate real-life exposure to high-frequency microwave radiation. Our results showed that exposure to 2.856 GHz microwave radiation elicited serum hormone disorder, decreased sperm motility, and depleted sperm energy, and it induced abnormalities of testicular structure as well as mitochondrial impairment. Metformin was found to effectively protect the reproductive system against structural and functional impairments caused by microwave radiation. In particular, metformin can ameliorate microwave-radiation-induced oxidative injury and mitigate apoptosis in the testis, as determined by glutathione/-oxidized glutathione (GSH/GSSG), lipid peroxidation, and protein expression of heme oxygenase-1 (HO-1). These findings demonstrated that exposure to 2.856 GHz microwave radiation induces obvious structural and functional impairments of the male reproductive system, and suggested that metformin can function as a promising antioxidant to inhibit microwave-radiation-induced harmful effects by inhibiting oxidative stress and apoptosis.

Excerpts

... the SAR value of 30 mW/cm2 microwave radiation to testicular tissue in this experiment was 34.2 W/kg, and the whole-body average SAR value for rats was 10.17 W/kg....

     Metformin not only acts as a free radical scavenger to reduce free radical production, but also reduces radiation-induced apoptosis [65]. In the reproductive system, metformin has been shown to reduce germ-cell-specific oxidative-stress-induced apoptosis that improves sperm quality after testicular damage [31]. Moreover, many studies have shown that microwave radiation induces free radical formation and excessive ROS accumulation in testicular tissue, causing activation of apoptosis [24,66,67]. In the present study, we used Bax/Bcl-2 and cleaved caspase-3 to detect apoptosis in testicular tissues. The results revealed that the Bax/Bcl-2 ratio and the expression of the cleaved caspase-3 were increased by 2.856 GHz microwave radiation exposure, and the increases were inhibited by metformin, indicating an important role for metformin against microwave-radiation-induced apoptosis.
     In conclusion, our results demonstrated that exposure to 2.856 GHz microwave radiation for 6 weeks caused obvious structural and functional impairments in the reproductive system and that rats still had not fully recovered from reproductive damage 28 days after radiation exposure, but that metformin protected against reproductive impairments, at least in part by inhibiting oxidative stress and apoptosis. The mechanisms and sensitive targets need to be further elucidated by sequencing, knockdown, or overexpression experiments.


--

Effect of WiFi signal exposure in utero and early life on neurodevelopment and behaviors of rats

Wu H, Min D, Sun B, Ma Y, Chen H, Wu J, Ren P, Wu J, Cao Y, Zhao B, Wang P. Effect of WiFi signal exposure in utero and early life on neurodevelopment and behaviors of rats. Environ Sci Pollut Res Int. 2023 Aug 10. doi: 10.1007/s11356-023-29159-4.

Abstract

The aim of this study is to examine the long-term effects of prenatal and early-life WIFI signal exposure on neurodevelopment and behaviors as well as biochemical alterations of Wistar rats. On the first day of pregnancy (E0), expectant rats were allocated into two groups: the control group (n = 12) and the WiFi-exposed group (WiFi group, n = 12). WiFi group was exposed to turn on WiFi for 24 h/day from E0 to postnatal day (PND) 42. The control group was exposed to turn-off WiFi at the same time. On PND7-42, we evaluated the development and behavior of the offspring, including body weight, pain threshold, and swimming ability, spatial learning, and memory among others. Also, levels of proteins involved in apoptosis were analyzed histologically in the hippocampus in response to oxidative stress. The results showed that WiFi signal exposure in utero and early life (1) increased the body weight of WiFi + M (WiFi + male) group; (2) no change in neuro-behavioral development was observed in WiFi group; (3) increased learning and memory function in WiFi + M group; (4) enhanced comparative levels of BDNF and p-CREB proteins in the hippocampus of WiFi + M group; (5) no neuronal loss or degeneration was detected, and neuronal numbers in hippocampal CA1 were no evidently differences in each group; (6) no change in the apoptosis-related proteins (caspase-3 and Bax) levels; and (7) no difference in GSH-PX and SOD activities in the hippocampus. Prenatal WiFi exposure has no effects on hippocampal CA1 neurons, oxidative equilibrium in brain, and neurodevelopment of rats. Some effects of prenatal WiFi exposure are sex dependent. Prenatal WiFi exposure increased the body weight, improved the spatial memory and learning function, and induced behavioral hyperactivity of male rats


Excerpt

On E0, the gravid rats were separated into 2 groups: the control group (n = 12) and the WiFi-exposed group (WiFi group, n = 12). Separate housing was provided for every pregnant rat. WiFi group was exposed to turn on WiFi for 24 h/day for 9 weeks. The control group was exposed to turn-off WiFi for the same time. WiFi device was (802-16e 2005 WiMAX Indoor CPE antennae, model number: WIXFMM-130, China) with a frequency of 2450 MHz (2.45 GHz). The duration of radiation was 24 h/day in a 30-cm distance from the antenna to the cages. We test the average electric field intensity is 2.1 V/m, the average power density is 82.32 mV/m2, average magnetic field intensity is 14.31 mA/m, and there are no differences between the inside and outside of the plastic cage.

--

A primary study on rat fetal development and brain-derived neurotrophic factor levels under the control of electromagnetic fields

DastAmooz S, Broujeni ST, Sarahian N. A primary study on rat fetal development and brain-derived neurotrophic factor levels under the control of electromagnetic fields. J Public Health Afr. 2023 Apr 19;14(6):2347. doi: 10.4081/jphia.2023.2347.

Abstract

Background  In previous researches, electromagnetic fields have been shown to adversely affect the behavior and biology of humans and animals; however, body growth and brain-derived neurotrophic factor levels were not evaluated.

Objective  The original investigation aimed to examine whether Electromagnetic Fields (EMF) exposure had adverse effects on spatial learning and motor function in rats and if physical activity could diminish the damaging effects of EMF exposure. In this study, we measured anthropometric measurements and brain-derived neurotrophic factor (BDNF) levels in pregnant rats’ offspring to determine if Wi-Fi EMF also affected their growth. These data we report for the first time in this publication.

Methods  Twenty Albino-Wistar pregnant rats were divided randomly into EMF and control (CON) groups, and after delivery, 12 male fetuses were randomly selected. For assessing the body growth change of offspring beginning at delivery, then at 21 postnatal days, and finally at 56 post-natal days, the crown-rump length of the body was assessed using a digital caliper. Examining BDNF factor levels, an Enzyme-linked immunosorbent assay ELISA kit was taken. Bodyweight was recorded by digital scale.

Results  Outcomes of the anthropometric measurements demonstrated that EMF blocked body growth in rats exposed to EMF. The results of the BDNF test illustrated that the BDNF in the EMF liter group was remarkably decreased compared to the CON group. The results indicate that EMF exposure could affect BDNF levels and harm body growth in pregnant rats’ offspring.

Conclusions  The results suggest that EMF exposure could affect BDNF levels and impair body growth in pregnant rats’ offspring.

Open access paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395370/

--

In-vivo measurement of radio frequency electric fields in mice brain

Yaghmazadeh O, Schoenhardt S, Sarabandi A, Sabet A, Sabet K, Safari F, Alon L, Buzsáki G. In-vivo measurement of radio frequency electric fields in mice brain. Biosens Bioelectron X. 2023 Sep;14:100328. doi: 10.1016/j.biosx.2023.100328.

Abstract

With the development of novel technologies, radio frequency (RF) energy exposure is expanding at various wavelengths and power levels. These developments necessitate updated approaches of RF measurements in complex environments, particularly in live biological tissue. Accurate dosimetry of the absorbed RF electric fields (E-Fields) by the live tissue is the keystone of environmental health considerations for this type of ever-growing non-ionizing radiation energy. In this study, we introduce a technique for direct in-vivo measurement of electric fields in living tissue. Proof of principle in-vivo electric field measurements were conducted in rodent brains using Bismuth Silicon Oxide (BSO) crystals exposed to varying levels of RF energy. Electric field measurements were calibrated and verified using in-vivo temperature measurements using optical temperature fibers alongside electromagnetic field simulations of a transverse electromagnetic (TEM) cell.


--

Do electromagnetic fields used in telecommunications affect wild plant species? A control impact study conducted in the field

Czerwiński M, Vian A, Woodcock BA, Goliński P, Recuero Virto L, Januszkiewicz T. Do electromagnetic fields used in telecommunications affect wild plant species? A control impact study conducted in the field. Ecological Indicators. Volume 150, 2023. doi:10.1016/j.ecolind.2023.110267.

Highlights

Existing studies on RF-EMF effects focus on laboratory short-time exposed crop plants.

We study 10 wild taxa under field conditions from seed germination to plant maturity.

Inter-specific variation in RF-EMF effects on plant morphology was observed.

The strongest RF-EMF effects occurred for Trifolium arvense. [Hare's foot clover]

Future studies should focus on keystone Trifolium species in grassland ecosystems.

Abstract

Over the last three decades there has been an unprecedented increase in both the coverage of wireless communication networks and the resultant radiofrequency electromagnetic field (RF-EMF) exposure level. There is growing concern that this rapid environmental change may have unexpected consequences for living organisms. Existing research on plants has shown that RF-EMF radiation can affect their growth and development, gene expression and various metabolic activities. However, these findings are largely derived from short-time exposure of crop plants under laboratory conditions. It remains unclear to what extent plants are affected by artificial RF-EMFs in real ecosystems and what potential consequences this could have for ecosystems. This study attempts to assess these long-term effects of RF-EMF exposure on wild plants under controlled experimental field conditions. We investigated the impacts of RF-EMF exposure (866–868 MHz frequency band) from seed germination to maturation for ten common herbaceous plant species over a four-month period. The selected plant species belong to various families and have different functional and morphological traits that might affect a response to the applied RF-EMF. For most of the considered species responses to RF-EMF were undetectable or weak, and where present restricted to a single trait. Only for one species, Trifolium arvense, were effects observed at different plant development stages and for different plant characteristics. In this species RF-EMF stimulated growth and probably influenced leaf heliotropic movements, as indicated by a larger height, larger leaf area and altered leaf orientation one month after germination. However, over the growing season Trifolium arvense plants exposed to RF-EMF entered the phase of senescence earlier, which was manifested through a reduction of green leaf area and an increase in the area of discolored leaf. We conclude that the effects of RF-EMF exposure at environmentally relevant levels can be permanent and irreversible in plants growing in the open natural environment, however, these effects are restricted to specific species. This in turn suggests that future studies should examine whether the effects observed here occur also in more common Trifolium species or other legumes that are a keystone component within European grasslands. Our findings also show that Trifolium arvense could be a candidate indicator of man-made RF-EMFs in the environment.

Open access paper: https://www.sciencedirect.com/science/article/pii/S1470160X23004090

--

Effect of extremely low-frequency electromagnetic radiation on pregnancy outcome: A meta-analysis

Zhou F, Ma C, Li Y, Zhang M, Liu W. The Effect of Extremely Low-Frequency Electromagnetic Radiation on Pregnancy Outcome: A Meta-Analysis. Ann Clin Case Rep. 2022; 7: 2326.

Abstract

Extremely low-frequency electromagnetic radiation (ELF-EMF) are generated by electrical devices and power systems (1 to 300 Hz). Although several studies have demonstrated that ELF-EMF may be associated with an increased risk of adverse pregnancy outcomes, other studies have shown no evidence of associations. This meta-analysis was conducted to assess the effect of extremely low frequency electromagnetic radiation on pregnancy outcomes. The following electronic bibliographic databases were searched to identify relevant studies: PubMed, Web Of Science, Cochrane library, Embase, EBSCO. In addition, the manual retrieval of relevant references was conducted as a supplement. Select all eligible studies published from Database construction library to March 10, 2021. Search type for queue research on influence of electromagnetic field radiation on pregnancy results. Data were screened and extracted independently by two researchers. Review Manager 5.3 software was used for the meta-analysis. There was no significant increase in the risk of miscarriage, stillbirth, birth defects and preterm delivery in the pregnant women who lived near the electromagnetic fields compared with the control group. Conclusions: No correlation has been found between maternal ELF-EMF exposure and miscarriage, stillbirth, neonatal birth defects and preterm delivery, while the effects on small gestational age and low birth weight are still uncertain. Related research with high-quality large samples and different regions are still needed for further verification.


--

Electromagnetic Radiation Exposure and Childhood Leukemia: Meta-Analysis and Systematic Review

Guo H, Kang L, Qin W, Li Y. Electromagnetic Radiation Exposure and Childhood Leukemia: Meta-Analysis and Systematic Review. Altern Ther Health Med. 2023 Sep 8:AT9251.

Abstract

Objective: Leukemia is the most prevalent cancer among children and adolescents. This study investigated the potential association between exposure to magnetic fields and the risk of pediatric leukemia.

Methods: We conducted a comprehensive search of electronic databases, including Scopus, EMBASE, Cochrane, Web of Science, and Medline, up to December 15, 2022, to identify relevant studies examining the link between childhood leukemia and magnetic field exposure.

Results: The first meta-analysis revealed a statistically significant inverse association between pediatric leukemia and magnetic field strengths ranging from 0.4 μT to 0.2 μT, suggesting a reduced risk associated with this range. The second meta-analysis focused on wiring configuration codes and observed a potential link between residential magnetic field exposure and childhood leukemia. Pooled relative risk estimates were 1.52 (95% CI = 1.05-2.04, P = .021) and 1.58 (95% CI = 1.15-2.23, P = .006) for exposure to 24-hour magnetic field measurements, suggesting a possible causal relationship. In the third meta-analysis, the odds ratios for the exposure groups of 0.1 to 0.2 μT, 0.2 to 0.3 μT, 0.3 to 0.4 μT, and 0.4 μT above 0.2 μT were 1.09 (95% confidence interval = 0.82 to 1.43 μT), 1.14 (95% confidence interval = 0.68 to 1.92 μT), and 1.45 (95% confidence interval = 0.87 to 2.37 μT), respectively. In contrast to the findings of the three meta-analyses, there was no evidence of a statistically significant connection between exposure to 0.2 μT and the risk of juvenile leukemia. A further result showed no discernible difference between the two groups of children who lived less than 100 meters from the source of magnetic fields and those who lived closer (OR = 1.33; 95% CI = 0.98-1.73 μT).

Conclusions: The collective results of three meta-analyses, encompassing magnetic field strengths ranging from 0.1 μT to 2.38 μT, underscore a statistically significant association between the intensity of magnetic fields and the occurrence of childhood leukemia. However, one specific analysis concluded that no apparent relationship exists between exposure to 0.1 μT and an elevated risk of leukemia development in children.


--

Correlations between geomagnetic field and global occurrence of cardiovascular diseases: evidence from 204 territories in different latitude

Chai Z, Wang Y, Li YM, Zhao ZG, Chen M. Correlations between geomagnetic field and global occurrence of cardiovascular diseases: evidence from 204 territories in different latitude. BMC Public Health. 2023 Sep 11;23(1):1771. doi: 10.1186/s12889-023-16698-1.

Abstract

Background: The correlation between stable geomagnetic fields and unstable geomagnetic activities with mortality, incidence, and prevalence of cardiovascular diseases (CVDs) remains ambiguous.

Method: To investigate the correlations between geomagnetic field (GMF) intensity and geomagnetic disturbance (GMD) and CVDs events in global, long-period scale, global and 204 countries and territories were included on the base of 2019 Global Burden of Disease study (GBD 2019). Data of GMF intensity, GMD frequency, CVDs events, weather and health economic indicators from 1996 to 2019 of included locations were collected. Linear regression and panel data modelling were conducted to identify the correlations between GMF intensity and CVDs events, multi-factor panel data analysis was also generated to adjust the effect of confounding factors.

Results: For the average data during 1996-2019, linear regression model revealed consistent positive correlations between total GMF (tGMF) intensity and mortality of total CVDs [coef = 0.009, (0.006,0.011 95%CI)], whereas negative correlations were found between horizonal GMF (hGMF) intensity and total CVD mortality [coef = -0.010 (-0.013, -0.007 95%CI)]. When considering the time trend, panel data analysis still demonstrated positive correlation between tGMF and total CVDs mortality [coef = 0.009, (0.008,0.009 95%CI)]. Concurrently, the hGMF negatively correlated with total CVDs mortality [coef = -0.008, (-0.009, -0.007 95%CI)]. When the panel models were adjusted for confounding factors, no reverse of correlation tendency was found between tGMF, hGMF and CVDs events. In high-income territories, positive correlation was found between geomagnetic storm (GMS) frequency and mortality of total CVDs [coef = 14.007,(2.785, 25.229 95%CI)], however, this positive trend faded away gradually with the latitude decreasing from polar to equator.

Conclusions: Stable and long-term horizontal component of GMF may be beneficial to cardiac health. Unstable and short-term GMF called GMD could be a hazard to cardiac health. Our results suggest the importance of regular GMF in maintaining cardio-health state and the adverse impacts of GMD on cardiac health.


--

Influence of Electromagnetic Field with Frequency of 50 Hz in form of Doses on Selected Biochemical Markers of Honey Bee

Plotnik M, Bieńkowski P, Berbeć E, Murawska A, Latarowski K, Migdał P. Influence of Electromagnetic Field with Frequency of 50 Hz in form of Doses on Selected Biochemical Markers of Honey Bee. Journal of Apicultural Science. 3923;67(1): 27-36. https://doi.org/10.2478/jas-2023-0003.

Abstract

The honey bee has a significant environmental and economic impact. While collecting food or water, bees are exposed to negative physical and chemical factors that lead to physiological and behavioral changes and, consequently, even death. Along with the development of technology and communication, electromagnetic fields produced by artificial emitters have begun to have an impact on the environment. The aim of the study was to check whether the electromagnetic field also impacts antioxidant enzymes functioning in the honey bee’s organism. The study was conducted under laboratory conditions, and one-day and seven-day-old honey bee workers were used in the experiment. Honey bee workers were exposed to an electromagnetic field with a frequency of 50Hz and variable intensity in the range of 1-10 kV/m. Immediately after the end of the exposure, hemolymph was collected from the bees for biochemical analysis. The results of the research did not show clearly whether changes in the activity of biochemical markers were affected by the time spent in the electromagnetic field orits intensity but did show that there was a difference in physiology between one-day-old and seven-day-old bees.

Open access paper: https://sciendo.com/article/10.2478/jas-2023-0003

--

No evidence for magnetic field effects on the behaviour of Drosophila

Bassetto M, Reichl T, Kobylkov D, Kattnig DR, Winklhofer M, Hore PJ, Mouritsen H. No evidence for magnetic field effects on the behaviour of Drosophila. Nature. 2023 Aug 9. doi: 10.1038/s41586-023-06397-7.

Abstract

Migratory songbirds have the remarkable ability to extract directional information from the Earth's magnetic field1,2. The exact mechanism of this light-dependent magnetic compass sense, however, is not fully understood. The most promising hypothesis focuses on the quantum spin dynamics of transient radical pairs formed in cryptochrome proteins in the retina3-5. Frustratingly, much of the supporting evidence for this theory is circumstantial, largely because of the extreme challenges posed by genetic modification of wild birds. Drosophila has therefore been recruited as a model organism, and several influential reports of cryptochrome-mediated magnetic field effects on fly behaviour have been widely interpreted as support for a radical pair-based mechanism in birds6-23. Here we report the results of an extensive study testing magnetic field effects on 97,658 flies moving in a two-arm maze and on 10,960 flies performing the spontaneous escape behaviour known as negative geotaxis. Under meticulously controlled conditions and with vast sample sizes, we have been unable to find evidence for magnetically sensitive behaviour in Drosophila. Moreover, after reassessment of the statistical approaches and sample sizes used in the studies that we tried to replicate, we suggest that many-if not all-of the original results were false positives. Our findings therefore cast considerable doubt on the existence of magnetic sensing in Drosophila and thus strongly suggest that night-migratory songbirds remain the organism of choice for elucidating the mechanism of light-dependent magnetoreception.