Friday, December 14, 2018

Overview Articles

Cellphones and cell towers: Protect your health
The Digital Divide, KBOO-FM (Portland, OR), Dec 14, 2018

Joel Moskowitz is interviewed by Rabia Yeaman. Stream (61 minutes w/ fund-raising breaks) https://kboo.fm/media/69867-digital-divide-121418  or download (38 minutes w/o breaks: 5:15 - 16:15 , 22:15 - 29:40, 36:05 - 48:20, 53:50 - 1:01:15) https://kboo.fm/sites/default/files/episode_audio/kboo_episode.2.181214.1100.3948.69867.mp3 

-- 

Cellphones and Public Health Policy (30-minute YouTube)
Joel Moskowitz, Collaborative on Health and the Environment Webinar, May 9, 2018

Are cellphones dangerous for your health?

Kim Komando, Apr 6, 2017 (20 minute podcast)

Is Cell Phone Radiation Safe?
ProCon.org, Feb 14, 2017


Are you carrying your cellphone too close to your body?
Nara Schoenberg, Chicago Tribune, Jan 26, 2017


Katia Savchuk, California Magazine, Oct 18, 2016

Markham Heid, TIME Magazine, Sep 28, 2016

Study results support push for tougher standards to protect humans from potential health effects
Ryan Knutson, Wall Street Journal, July 6, 2016 

U.S. Cellphone Study Fans Cancer Worries
Researchers found incidences of tumor in rats exposed to low-level radio waves, reigniting debate over safety
Ryan Knutson, Wall Street Journal, May 28, 2016
Joel Moskowitz & Larry Junck, Wall Street Journal, May 22, 2016

At C.D.C., a Debate Behind Recommendations on Cellphone Risk 
Danny Hakim, New York Times, Jan 1, 2016

Does Cell-Phone Radiation Cause Cancer?
David Schipper, Consumer Reports, September 24, 2015

Is Cell Phone Radiation Actually Dangerous: We Asked an Expert
Simon Hill, Digital Trends, Apr 21, 2015
Spanish translation by Escuela Sin Wifi: http://bit.ly/radiaciontelefono

Italian translation of original version by Associazione Elettrosmog Sicilia:  http://bit.ly/Y9E4Wy

Electromagnetic Radiation Safety

Recent News

Ronald Melnick, Ph.D. There's a clear cell phone-cancer link, but FDA is downplaying itThe Hill, Nov 13, 2018.
  Dr. Melnick was the senior toxicologist who led the design of the National Toxicology Program cell phone radiation studies.

Joyce Nelson. 5G Corporate Grail: Smart cities/dumb people?  Watershed Sentinel, Nov 5, 2018.
  "There’s a lot of hype about 5G, the fifth-generation wireless technology that is being rolled out in various “5G test beds” in major cities ...But it’s hard to see why we should be excited."

Annelie Fitzgerald. Mobile Phone Cover-up? Gov’t advisory body disbanded – inaccurate and misleading conclusions remain. TruePublica (UK), Oct 17, 2018.
   UK disbanded advisory group on non-ionizing radiation (AGNIR) after group issued inaccurate assessment of wireless radiation science subject to conflicts of interest. Public Heath England still relies on AGNIR report.

Martin Röösli. Mobile phone radiation may affect memory performance in adolescents. Medical Xpress. July 20, 2018.
  Radio frequency radiation may have adverse effects on memory performance of specific brain regions exposed during mobile phone use.

Ronnie Cohen. Do cellphones cause cancer? Government study reveals 'stunningly important findings. Newsweek, July 19, 2018.
  Current cellphone safety regulations are based on a premise that is now arguably false: that cellphone radiation can cause harm only by heating tissue.

Mark Hertsgaard and Mark Dowie. The inconvenient truth about cancer and mobile phones.The Guardian, July 14, 2018.
  We dismiss claims about mobiles being bad for our health – but is that because studies showing a link to cancer have been cast into doubt by the industry?

Reynard Loki. Our cellphone addiction is turning wireless tech into an invisible weapon that’s destroying wildlife. Salon, July 14, 2018.
  Electromagnetic radiation from Wi-Fi and cell towers poses a “credible risk” to birds, mammals, insects and plants

Lynne Peeples. Should cell phone providers warn customers of health risks? Berkeley says yesMcClatchy News Washington Bureau, July 11, 2018.
  Although the scientific community has not reached consensus, the California health department said research indicates long-term, extensive cellphone use may affect health.

Lynne Peeples. Wireless industry using First Amendment as a cudgel in its battle against safety warningsFairWarning, July 11, 2018.
  Complete version of the article. News websites published the McClatchy version.

Microwave News. "'Clear evidence' of cell phone cancer risk, say leading pathologists." April 9, 2018.
  Why the peer review panel and NTP interpreted the same animal data differently. 

Mark Hertsgaard and Mark Dowie. "How big wireless made us think that cell phones are safe: A special investigation.The Nation, March 29, 2018.
  The disinformation campaign—and massive radiation increase—behind the 5G rollout.

Recent Posts on EMR Safety

Effects of Cell Phone Use on Adolescents 
 Research on adolescents suggests that cell phone use disturbs sleep and has adverse effects on memory and cognitive processes, and on the endocrine system.

Worldwide Radio Frequency Radiation Exposure Limits versus Health Effects

  "Wireless radiation exposure limits and a summary of biologic and health effect studies by exposure level."

5G Wireless Technology: Is 5G Harmful to Our Health?
  "Both oncologic and non-cancerous chronic effects have been suggested."

Recent Research on Wireless Radiation and Electromagnetic Fields 
  Compilation of over 500 abstracts of scientific papers published since August, 2016.

Effect of Mobile Phones on Sperm Quality
  Research that examines the effects of wireless radiation on sperm. Eight review papers and more than 40 recent studies.

Thyroid Cancer & Mobile Phone Use
  The evidence is mounting from epidemiologic and biologic studies that heavy cell phone use may cause thyroid cancer.

NTP Cell Phone Radiation Study: Final Reports
  A $30 million study by the National Toxicology Program found that long-term exposure to cell phone radiation caused cancer in male rats and DNA damage in mice and rats.
  
National Toxicology Program: Peer & public review of cell phone radiation study.
  Former NTP scientist defends study; expert reviewers argue that results call for stronger RF exposure guidelines & IARC should upgrade cancer risk.

National Toxicology Program (NTP) Finds Cell Phone Radiation Causes Cancer
  Experts convened by NTP found "clear evidence" of cancer from cell phone radiation. Official summary now available.

ICNIRP’s Exposure Guidelines for Radio Frequency Fields
  ICNIRP requests public input on its radio frequency radiation exposure guidelines. Former NTP scientist critiques ICNIRP.

5G Wireless Technology: Cutting Through the Hype
  News stories debunk exaggerated benefits of 5G cellular technology.

PowerWatch: 1,670 Scientific Papers on EMF
  This list is a compilation of citations for 1,670 peer-reviewed papers about EMF published in scientific journals from 1979 through 2018.


Special Issue: Electromagnetic Fields (EMF) in Biology & Medicine
  Nine EMF papers published in a special issue of the International Journal of Radiation Biology.

Recent Research on Wi-Fi Effects
  Compilation of recent studies on biologic and health effects from exposure to Wi-Fi radiation.

Research on Smart Phone and Internet Addiction
  Recent studies on dependence or addiction to mobile devices, gaming, or the internet.

  New real-world study of cell phone radiation confirms recommendations in the Department's cell phone safety guidance.

iPhone XS and XR: Specific Absorption Rates (SAR) or RF Exposure
  What are the SAR values for iPhone’s new smart phones? How should consumers use this information?

Hybrid & Electric Cars: Electromagnetic Radiation Risks
  Modern automobiles increasingly incorporate EMF-emitting devices that pose a risk to human health.

Wireless Radiation TV News
  Links to over 150 televised news stories about wireless radiation health risks.

 Recent research and policy developments regarding electromagnetic hypersensitivity.

  City Council reaffirms its commitment to defend landmark cell phone "right to know" ordinance against telecom industry lawsuit in the federal courts.

New Apple Watch Reignites Concerns over Cell Phone Radiation
  How much wireless radiation (cellular, Wi-Fi, Bluetooth) is emitted by smart watches? 

Brain Tumor Rates Are Rising in the US: Role of Cell Phone & Cordless Phone Use
 The CDC reported that brain cancer incidence among youth 0-20 years of age increased between 2001 and 2014. Also thyroid cancer and lymphoma.

Scientific Evidence of Harm from Cell Phone Radiation: Two Years of Research
  An annotated bibliography which contains 92 papers published in scientific journals during the last two years that report evidence of harm from cell phone radiation exposure.

International Perspective on Health Effects of Low Intensity Non-Ionizing Radiation
  There is an urgent need to recognize hazards associated with excessive exposure to non-thermal levels of electromagnetic fields.

International Scientist Appeal on Electromagnetic Fields & Wireless Technology
  242 scientists from 41 nations including 38 from the U.S. have signed the Appeal.

Key Cell Phone Radiation Research Studies

Female Infertility and Cell Phone Radiation
  Research that investigates the effects of wireless radiation on female fertility.

Pregnancy & Wireless Radiation Risks
  Compilation of studies that found harmful effects from fetal exposure to wireless radiation.

5G Moratorium Website Launched
  Official website for 5G Appeal: Over 200 scientists doctors have signed Appeal.

Electromagnetic Fields Threaten Wildlife
 Research review: EMF is potential risk to insect and bird orientation and plant health.

EMF Health Impacts and Policy Change Webinar
  Drs. Frank Barnes, De-Kun Li, & Joel Moskowitz discuss EMF research and implications for policy change. Sponsored by Collaborative for Health & the Environment.

Ramazzini Institute Cell Phone Radiation Study Replicates NTP Study
  Ramazzini Institute replicates heart cancer results from NTP cell phone radiation study.

Thursday, December 13, 2018

5G Wireless Technology: Cutting Through the Hype

The CTIA, the wireless industry trade association, has launched an advertising campaign entitled, "The Global Race to 5G." The ads claim that unless the U.S. wins this "global race" to become the first nation to deploy the fifth generation of wireless technology or 5G, we will not reap the economic benefits of this technology. 

The CTIA claims that "compared to today's 4G networks, 5G will be up to 100x faster, support 100x more devices, and provide a 5x faster response time." Moreover, the association asserts that the nation's wireless industry is prepared to invest $275 billion in 5G which will yield three million new jobs and $500 billion in economic growth. If we win the global race, the "next-generation of wireless will drive $2.7 trillion of new economic benefits to American families and businesses."

The CTIA has denied for decades that there are adverse health effects from exposure to wireless radiation. By establishing a revolving door between its leadership and the FCC's, the CTIA ensures that the federal regulatory agency maintains the inadequate, obsolete radio frequency exposure limits which the FCC adopted in 1996.

The FCC and federal health agencies have been oblivious to the health concerns raised by more than 240 scientists from 41 nations who have published peer-reviewed research on the biologic or health effects of exposure to electromagnetic fields.

This September more than 200 scientists and doctors from 35 countries signed a declaration demanding a moratorium on the planned increase of cell antennas for 5G deployment in the European Union. Concerns over health effects from higher radiation exposure include potential neurological impacts, infertility, and cancer.

The following excerpts were extracted from a 23-page special report from RCR Wireless that cuts through much of the hype surrounding the deployment of 5G. The excerpts are direct quotes from the report. RCR Wireless is a trade publication that has reported on the wireless industry and wireless technology since 1982.

Transitioning to a 5G World

Kelly Hill, RCR Wireless, November, 2017

Excerpts from the Report
Hype is certainly high for 5G, given that the industry is still technically in a pre-standard phase and that standalone 5G systems are still some time off.
5G is coming even faster than originally expected. In December, the first official specification from the Third Generation Partnership Project is expected to be released; 5G New Radio will finally make its standardized debut – although like Long Term Evolution, 5G will continue to evolve and be refined in the coming years.
“5G will not replace LTE,” Rysavy Research concluded in an August report for the GSMA. “In most deployments, the two technologies will be tightly integrated and co-exist through at least the late-2020s.”
Although the industry is preparing for 5G, LTE [4G] capabilities will continue to improve in LTE Advanced Pro through the rest of the decade,”  Rysavy wrote .... 5G will eventually play an important role, but it must be timed appropriately so that the jump in capability justifies the new investment.
KT, for example, plans to support two different frequencies from the get-go in its 5G network: 3.5 GHz as an anchor with better propagation, complemented by 28 GHz in dense areas. Given that networks are expected to initially be 4G/5G networks, testing will have to continue to support LTE alongside 5G.
Hurtarte of LitePoint noted that although “millimeter wave” tends to be treated as one category, there are significant differences between the components and frequency planning needed at 28 GHz versus 39 GHz. In addition, although some frequencies are widely agreed upon, there are other frequencies that may get the nod for 5G use: 24 GHz in China, possibly 40-43 Ghz and possibly even above 70 GHz.
There are some major challenges to the success of 5G, which are all interrelated: the move to mmwave, the need for ultra-density, and the question of when the economics of 5G will actually work well enough to take off.
Mmwave [millimeter wave] provides the huge bandwidths that are needed for fast speeds and high capacity, but the higher the frequency, the shorter its range and more susceptible it is to being easily blocked and reflected (thus the need for beamforming in order to focus the energy more tightly). Seasonal foliage, energy efficient glass windows with special coatings, and standard housing materials all present effective barriers to mmwave reaching indoors to customer premise equipment, operators and vendors have found in their field testing.
Denisowski pointed out that fixed wireless is one thing, but moving objects are another. Obstruction, not radiating sources of energy, is likely to be the main cause of interference in 5G systems: vehicles driving back and forth, or even wind farms can scatter microwave radiation.
Density of foliage “plays a big role,” said Thadasina of Samsung, which has been working with a number of carriers on 5G trials. “What we found is that for the mmwave signal, as it penetrated through trees, the thickness of the trees matters. Initially the impedence offered by foliage is linear, but beyond a certain density it is no longer linear … it kills the signal.” Building materials are well-known to play a role in transmission from outdoors to indoors, he added, but the angle of incidence does as well. The difference between 30 degrees to 60 degrees to 90 degrees can create additional impedance, Thadasina said, “some of those things make it challenging in terms of closing the link.” Moisture levels play a role as well, he said ....
Fiber is fuel for 5G, and its prevalence is increasing. SNL Kagan found earlier this year that global fiber residential investment increased sharply in 2016, and that fiber is on track to reach 1 billion subscribers by 2021. Meanwhile, in the U.S., Vertical Systems Group reported that 49.6% of multi-tenant and enterprise buildings had access to fiber last year, compared to only 10% in 2004.

Deloitte said earlier this year that it expects to see $130 billion-$150 billion in “deep fiber” investment in the U.S. over 5-7 years, due to a combination of broadband competition, ensuring 5G readiness, and expanding fiber into new areas.

Murphy of Nokia said that operators should expect that, depending on which frequency they deploy in, they will need 2.5 to 10 times as many sites as they have now. That’s a tall order, especially given that small cell sites in cellular frequencies can take 18 to 24 months to get site approvals – scaling small cells has been hard enough in LTE, with the market moving much more slowly than analysts had predicted or carriers would like.
“It’s going to take a long time,” Einbinder said. “Constructing a cell tower is hard. A micro-cell has a lot of the same issues”: power and fiber and access to a site, which a community may be reluctant to grant – California, for instance, recently rejected a measure passed at the state level that would have streamlined processes for small cells.
... Einbinder thinks that some communities will take initiative and want to be 5G economic centers. While that’s encouraging for operators, it may also mean that 5G coverage maps look very different from the familiar red, blue, yellow and magenta maps indicating nationwide coverage. “The resulting coverage maps might have a lot more to do with [communities] than any economic or technological drivers – it’s going to be driven by local preference.”
While early work estimated that as many as 40 to 50 homes could be covered by a single fixed wireless site, according to Rouault of EXFO, that number has turned out to be around five in testing because of the complexity of beamforming necessary to support multiple homes. “It’s not at the point we would say the verdict is out,” Rouault added. “The technology is proven to work, but to make the business case work, the scale is the problem right now.”
So the biggest question is where a breakthrough is going to happen that becomes the point at which 5G becomes a more attractive investment than LTE. “What can 5G do that other systems can’t? This is where there is no clear answer,” said Hemant Minocha, EVP for device and IoT at TEOCO. There is no 5G requirement for IoT [Internet of Things], he points out, and the business case hasn’t yet been proven out for ultra-low latency (not to  mention that LTE is capable of lower latency than it has achieved to this point in networks).
Key Takeaways:
• The industry is moving quickly toward 5G, with momentum in testing and trials. The first official 5G specification from 3GPP is expected in December, with a protocol-focused release coming in the spring of 2018.
• Many features and architectures in LTE, particularly gigabit LTE, will both underpin future 5G networks and provide lessons learned in making 5G systems work. These include dense fiber deployment, higher-order and massive MIMO, network slicing, virtualization, and mobile edge computing.
• The biggest challenge for 5G lies in a millimeter-wave based RAN, with significant challenges ahead for designing and deploying a workable, optimized and profitable mmwave network on a large scale.

The RCR Wireless report, "Transitioning to a 5G World," can be downloaded at http://bit.ly/5Ghype.


Related posts



Troy Wolverton, Business Insider, Dec 14, 2018

Don’t buy a 5G smartphone—at least, not for a while
Ron Amadeo, Ars Technica, Dec 14, 2018

The first ‘real world’ 5G test was a dud
Sean Hollister, The Verge, Dec 4, 2018

5G Corporate Grail: Smart cities/dumb people?  
Joyce Nelson. Watershed Sentinel, Nov 5, 2018.

Do we even need 5G at all?
Jeremy Kaplan, Digital Trends, Oct 26, 2018

Why 5G is out of reach for more people than you think
Shara Tibken, c|net, Oct 25, 2018

Volkswagen a winner as EU set to favour wifi over 5G: draft
Foo Yun Chee, Reuters, Oct 19, 2018

The 5G hype cycle is about to run into a hard truth: Subsidies needed!
Strategy Analytics, Business Wire, Oct 18, 2018
Dexter Johnson, IEEE Spectrum, Oct 11, 2018

Kieren McCarthy, The Register, Sep 19, 2018
John C. Dvorak, PC Magazine, Aug 22, 2018.

Ed Sperling, Semiconductor Engineering. Aug 22, 2018.

Jof Enriquez, RF Globalnet, June 1, 2018

The ‘Race to 5G’ Is Just Mindless Marketing Bullshit
Karl Bode, Motherboard, May 4, 2018

MWC and the 5G Hype Machine Keep on Giving, and Giving and Giving...
Ernest Worthman, AGL Media Group, Apr 19, 2018
David Lazarus, Los Angeles Times, Jan 9, 2018

Upgrade to 5G Costs $200 Billion a Year, May Not Be Worth It
Olga Kharif and Scott Moritz, Bloomberg, Dec 18, 2017

Impact of EMF Limits on 5G Network Rollout
Christer Tornevik, ITU Workshop on 5G, EMF and Health, Dec 5, 2017

Microwave Radiation Coming to a Lamppost near You
Merinda Teller, MPH, PhD, Weston A. Price Foundation, Dec 1, 2017

5G Is Not the Answer For Rural Broadband
Larry Thompson and Warren Vande Stadt, Broadband Communities. March/April, 2017

The Next Generation of Wireless -- "5G"-- Is All Hype
Susan Crawford, Wired, Aug 11, 2016

Wednesday, December 12, 2018

Effects of Cell Phone Use on Adolescents

Telecommunication devices use, screen time and sleep in adolescents

Cabre-Riera A, Torrent M, Donaire-Gonzalez D, Vrijheid M, Cardis E, Guxens M. Telecommunication devices use, screen time and sleep in adolescents. Environmental Research. Available online 1 November 2018.  
https://doi.org/10.1016/j.envres.2018.10.036

Highlights

• Telecommunication and other screen devices use was collected in adolescents
• Both subjective and objective sleep measures were assessed
• Tablet use and mobile phone dependency were associated with poorer sleep
• Frequency of cordless phone calls was associated with poorer sleep
• Public health recommendations on telecommunication devices use should be a priority

Abstract

Purpose To investigate the association between telecommunication and other screen devices and subjective and objective sleep measures in adolescents at 17–18 years.

Methods Cross-sectional study on adolescents aged 17–18 years from a Spanish population-based birth cohort established in Menorca in 1997–1998. Information on devices use was collected using self-reported questionnaires. Mobile Phone Problematic Use Scale was used to assess mobile phone use dependency. Pittsburgh Sleep Quality Index was used to assess subjective sleep (n=226). ActiGraph wGT3X-BT for 7 nights was used to assess objective sleep (n=110).

Results One or more cordless phone calls/week was associated with a lower sleep quality [Prevalence Ratio PR 1.30 (95%CI 1.04; 1.62)]. Habitual and frequent problematic mobile phone use was associated with a lower sleep quality [PR 1.55 (95%CI 1.03; 2.33) and PR 1.67 (95%CI 1.09; 2.56), respectively]. Higher tablet use was associated with decreased sleep efficiency and increased minutes of wake time after sleep onset [β −1.15 (95%CI −1.99; −0.31) and β 7.00 (95%CI 2.40; 11.60) per increase of 10 minutes/day of use, respectively]. No associations were found between other devices and sleep measures.

Conclusions Tablet use, mobile phone use dependency, and frequency of cordless phone were related to an increase of subjective and objective sleep problems in adolescents. These results seem to indicate that sleep displacement, mental arousal, and exposure to blue light emission might play a more important role on sleep than a high RF-EMF exposure to the brain. However, more studies are needed assessing personal RF-EMF levels to draw conclusions.

--


Cohort study of adolescents' memory performance & brain dose of microwave radiation from wireless EMF

Foerster M., Thielens A., Joseph W., Eeftens M., Röösli M. (2018) A prospective cohort study of adolescents' memory performance and individual brain dose of microwave radiation from wireless communication. Environmental Health Perspectives.126(7):077007. doi: 10.1289/EHP2427.


Abstract

BACKGROUND: The potential impact of microwave radiofrequency electromagnetic fields (RF-EMF) emitted by wireless communication devices on neurocognitive functions of adolescents is controversial. In a previous analysis, we found changes in figural memory scores associated with a higher cumulative RF-EMF brain dose in adolescents.

OBJECTIVE: We aimed to follow-up our previous results using a new study population, dose estimation, and approach to controlling for confounding from media usage itself.

METHODS: RF-EMF brain dose for each participant was modeled. Multivariable linear regression models were fitted on verbal and figural memory score changes over 1 y and on estimated cumulative brain dose and RF-EMF related and unrelated media usage (n=669–676). Because of the hemispheric lateralization of memory, we conducted a laterality analysis for phone call ear preference. To control for the confounding of media use behaviors, a stratified analysis for different media usage groups was also conducted.

RESULTS: We found decreased figural memory scores in association with an interquartile range (IQR) increase in estimated cumulative RF-EMF brain dose scores: −0:22 (95% CI: −0:47, 0.03; IQR: 953 mJ=kg per day) in the whole sample, −0:39 (95% CI: −0:67, −0:10; IQR: 953 mJ=kg per day) in right-side users (n=532), and −0:26 (95% CI: −0:42, −0:10; IQR: 341 mJ=kg per day) when recorded network operator data were used for RF-EMF dose estimation (n=274). Media usage unrelated to RF-EMF did not show significant associations or consistent patterns, with the exception of consistent (nonsignificant) positive associations between data traffic duration and verbal memory.

CONCLUSIONS: Our findings for a cohort of Swiss adolescents require confirmation in other populations but suggest a potential adverse effect of of RF-EMF brain dose on cognitive functions that involve brain regions mostly exposed during mobile phone use. 

Conclusion

We found preliminary evidence suggesting that RF-EMF may affect brain functions such as figural memory in regions that are most exposed during mobile phone use. Our findings do not provide conclusive evidence of causal effects and should be interpreted with caution until confirmed in other populations. Associations with media use parameters with low RF-EMF exposures did not provide clear or consistent support of effects of media use unrelated to RF-EMF (with the possible exception of consistent positive associations between verbal memory and data traffic duration). It is not yet clear which brain processes could be potentially affected and what biophysical mechanism may play a role. Potential long-term risk can be minimized by avoiding high brain-exposure situations as occurs when using a mobile phone with maximum power close to the ear because of, for example, bad network quality.

Note: The original study appears below (Schoeni et al., 2015).

Open access paper: https://ehp.niehs.nih.gov/EHP2427/

--


Decreases in sleep duration among U.S. adolescents 2009-2015 & association with new media screen time

Twenge JM, Krizan Z, Hisler G. Decreases in self-reported sleep duration among U.S. adolescents 2009-2015 and association with new media screen time. Sleep Med. 2017 Nov;39:47-53. doi: 10.1016/j.sleep.2017.08.013.

Highlights

• More adolescents in 2015 (vs. 2009) slept less than 7 h a night on most nights.
• Electronic device and social media use also increased in 2009–2015.
• Electronic device and social media use increases the odds of short sleep duration. 
• Smartphones may be the cause of the increase in self-reported short sleep duration.

Abstract

STUDY OBJECTIVES: Insufficient sleep among adolescents carries significant health risks, making it important to determine social factors that change sleep duration. We sought to determine whether the self-reported sleep duration of U.S. adolescents changed between 2009 and 2015 and examine whether new media screen time (relative to other factors) might be responsible for changes in sleep.

METHODS:We drew from yearly, nationally representative surveys of sleep duration and time use among adolescents conducted since 1991 (Monitoring the Future) and 2007 (Youth Risk Behavior Surveillance System of the Centers for Disease Control; total N = 369,595).

RESULTS: Compared to 2009, adolescents in 2015 were 16%-17% more likely to report sleeping less than 7 h a night on most nights, with an increase in short sleep duration after 2011-2013. New media screen time (electronic device use, social media, and reading news online) increased over this time period and was associated with increased odds of short sleep duration, with a clear exposure-response relationship for electronic devices after 2 or more hours of use per day. Other activities associated with short sleep duration, such as homework time, working for pay, and TV watching, were relatively stable or reduced over this time period, making it unlikely that these activities caused the sudden increase in short sleep duration.

CONCLUSIONS: Increased new media screen time may be involved in the recent increases (from 35% to 41% and from 37% to 43%) in short sleep among adolescents. Public health interventions should consider electronic device use as a target of intervention to improve adolescent health.


--


The effects of EMF on the endocrine system in children and adolescents

Sangün Ö, Dündar B, Çömlekçi S, Büyükgebiz A. The effects of electromagnetic field on the endocrine system in children and adolescents. Pediatr Endocrinol Rev. 2015 Dec;13(2):531-45.

Abstract


Children are exposed to various kind of non-ionizing radiation in their daily life involuntarily. The potential sensitivity of developing organism to the effects of radiofrequency (RF) signals, the higher estimated specific absorption rate (SAR) values of children and greater lifetime cumulative risk raised the scientific interest for children's vulnerability to electromagnetic fields (EMFs). In modern societies, children are being exposed to EMFs in very early ages. There are many researches in scientific literature investigating the alterations of biological parameters in living organisms after EMFs. Although the international guidelines did not report definite, convincing data about the causality, there are unignorable amount of studies indicating the increased risk of cancer, hematologic effects and cognitive impairment. Although they are less in amount; growing number of studies reveal the impacts on metabolism and endocrine function. Reproductive system and growth look like the most challenging fields. However there are also some concerns on detrimental effects of EMFs on thyroid functions, adrenal hormones, glucose homeostasis and melatonin levels. It is not easy to conduct a study investigating the effects of EMFs on a fetus or child due to ethical issues. Hence, the studies are usually performed on virtual models or animals. Although the results are conflicting and cannot be totally matched with humans; there is growing evidence to distress us about the threats of EMF on children.

http://1.usa.gov/1QhY253


--

Does exposure to environmental RF EMF cause cognitive & behavioral effects in 10-year-old boys?

Calvente, I., Pérez-Lobato, R., Núñez, M.-I., Ramos, R., Guxens, M., Villalba, J., Olea, N. and Fernández, M. F. (2016), Does exposure to environmental radiofrequency electromagnetic fields cause cognitive and behavioral effects in 10-year-old boys?. Bioelectromagnetics, 37: 25–36. doi: 10.1002/bem.21951.

Abstract


The relationship between exposure to electromagnetic fields from non-ionizing radiation and adverse human health effects remains controversial. We aimed to explore the association of environmental radiofrequency-electromagnetic fields (RF-EMFs) exposure with neurobehavioral function of children.

A subsample of 123 boys belonging to the Environment and Childhood cohort from Granada (Spain), recruited at birth from 2000 through 2002, were evaluated at the age of 9–11 years. Spot electric field measurements within the 100 kHz to 6 GHz frequency range, expressed as both root mean-square (S
RMS) and maximum power density (SMAX) magnitudes, were performed in the immediate surrounds of children's dwellings. Neurocognitive and behavioral functions were assessed with a comprehensive battery of tests. Multivariate linear and logistic regression models were used, adjusting for potential confounders.

All measurements were lower than reference guideline limits, with median S
RMS and SMAX values of 285.94 and 2759.68 μW/m2, respectively. Most of the cognitive and behavioral parameters did not show any effect, but children living in higher RF exposure areas (above median SRMS levels) had lower scores for verbal expression/ comprehension and higher scores for internalizing and total problems, and obsessive-compulsive and post-traumatic stress disorders, in comparison to those living in areas with lower exposure. These associations were stronger when SMAX values were considered.

Although some of our results may suggest that low-level environmental RF-EMF exposure has a negative impact on cognitive and/or behavior development in children; given limitations in the study design and that the majority of neurobehavioral functioning tasks were not affected, definitive conclusions cannot be drawn.


http://onlinelibrary.wiley.com/doi/10.1002/bem.21951/abstract

--

November 19, 2015

Two recently published studies on adolescents report harmful effects of mobile phone use. A cross-sectional study found that adolescents who were awakened by a mobile phone at least once a month during the night were more likely to report tiredness, rapid exhaustibility, headache and physical ill-being. A prospective cohort study found that greater wireless radiation exposure predicted lower memory test performance.

Symptoms & cognitive functions in adolescents in relation to mobile phone use

Schoeni A, Roser K, Röösli M. Symptoms and cognitive functions in adolescents in relation to mobile phone use during night. PLoS One. 2015 Jul 29;10(7):e0133528. doi: 10.1371/journal.pone.0133528.

Abstract

Many adolescents tend to leave their mobile phones turned on during night, accepting that they may be awakened by an incoming text message or call. Using self-reported and objective operator recorded mobile phone use data, we thus aimed to analyze how being awakened during night by mobile phone affects adolescents' perceived health and cognitive functions.

In this cross-sectional study, 439 adolescents completed questionnaires about their mobile phone use during night, health related quality of life and possible confounding factors. Standardized computerized cognitive tests were performed to assess memory and concentration capacity. Objective operator recorded mobile phone use data was further collected for 233 study participants. Data were analyzed by multivariable regression models adjusted for relevant confounders including amount of mobile phone use.

For adolescents reporting to be awakened by a mobile phone during night at least once a month the odds ratio for daytime tiredness and rapid exhaustibility were 1.86 (95% CI: 1.02-3.39) and 2.28 (95% CI: 0.97-5.34), respectively. Similar results were found when analyzing objective operator recorded mobile phone use data (tiredness: 1.63, 95% CI: 0.94-2.82 and rapid exhaustibility: 2.32, 95% CI: 1.01-5.36). The cognitive tests on memory and concentration capacity were not related to mobile phone use during night. Overall, being awakened during night by mobile phone was associated with an increase in health symptom reports such as tiredness, rapid exhaustibility, headache and physical ill-being, but not with memory and concentration capacity.

Prevention strategies should focus on helping adolescents set limits for their accessibility by mobile phone, especially during night.

Conclusion

Among Swiss adolescents, we have observed that nocturnal mobile phone use was associated with an increase in health symptom reports such as tiredness, rapid exhaustibility, headache and physical ill-being, but not with memory and concentration capacity. More studies to investigate these associations are necessary and education in sleep behaviour may be inevitable since the mobile phone is now the most familiar lifestyle factor for adolescents.

Public Health prevention strategies should focus on helping adolescents set limits for their accessibility by mobile phone, especially during night.

Open Access Paper: http://1.usa.gov/1NeP2lJ

--

Memory performance, wireless communication & RF EMF exposure: Prospective cohort study in adolescents

Schoeni A, Roser K, Röösli M. Memory performance, wireless communication and exposure to radiofrequency electromagnetic fields: A prospective cohort study in adolescents. Environ Int. 2015 Oct 13;85:343-351. doi: 10.1016/j.envint.2015.09.025.

Highlights

• This is a prospective cohort study with approx. one year of follow-up.
• Self-reported and operator recorded mobile phone use data were collected.
• The cumulative RF-EMF dose for the brain and for the whole body was calculated.
• Associations were stronger for RF-EMF dose than for use of wireless devices.
• RF-EMF exposure might impair memory performance in adolescents.

Abstract

BACKGROUND: The aim of this study is to investigate whether memory performance in adolescents is affected by radiofrequency electromagnetic fields (RF-EMF) from wireless device use or by the wireless device use itself due to non-radiation related factors in that context.

METHODS: We conducted a prospective cohort study with 439 adolescents. Verbal and figural memory tasks at baseline and after one year were completed using a standardized, computerized cognitive test battery. Use of wireless devices was inquired by questionnaire and operator recorded mobile phone use data was obtained for a subgroup of 234 adolescents. RF-EMF dose measures considering various factors affecting RF-EMF exposure were computed for the brain and the whole body. Data were analysed using a longitudinal approach, to investigate whether cumulative exposure over one year was related to changes in memory performance. All analyses were adjusted for relevant confounders.

RESULTS: The kappa coefficients between cumulative mobile phone call duration and RF-EMF brain and whole body dose were 0.62 and 0.67, respectively for the whole sample and 0.48 and 0.28, respectively for the sample with operator data. In linear exposure-response models an interquartile increase in cumulative operator recorded mobile phone call duration was associated with a decrease in figural memory performance score by -0.15 (95% CI: -0.33, 0.03) units. For cumulative RF-EMF brain and whole body dose corresponding decreases in figural memory scores were -0.26 (95% CI: -0.42, -0.10) and -0.40 (95% CI: -0.79, -0.01), respectively. No exposure-response associations were observed for sending text messages and duration of gaming, which produces tiny RF-EMF emissions.

CONCLUSIONS: A change in memory performance over one year was negatively associated with cumulative duration of wireless phone use and more strongly with RF-EMF dose. This may indicate that RF-EMF exposure affects memory performance.

http://1.usa.gov/1M6BCHW


Excerpts

... From a public health point of view potential effects of chronic exposure are more relevant, which needs to be investigated with epidemiological studies. So far there has only been one community-based epidemiological study investigating effects of mobile phone use on adolescents' memory. Abramson et al. (2009) showed in a cross-sectional analysis of 317 seventh grade students from Australia that mobile phone use was associated with faster and less accurate response on a number of tasks involving the memory. Since similar associations were found in relation to the number of SMS (short text messages), which produces negligible RF-EMF exposure, they speculated that these behaviours may have been learned through the frequent use of a mobile phone and may not be the consequence of mobile phone radiation. In a follow-up investigation one year later, in 236 of these students, an increase in mobile phone use was associated with a reduction in response time in one out of three tests involving the memory (Thomas et al., 2010). This study relied on self-reported mobile phone use only, which has been shown to be inaccurate. Adolescents tend to substantially overestimate their amount of mobile phone use (Aydin et al., 2011; Inyang et al., 2009).

Regular mobile phone use may affect adolescents in various ways. Thus, the main challenge for research consists in differentiating between RF-EMF radiation effects and other non-RF-EMF related effects from mobile phone use. For instance, frequent texting or gaming on a mobile phone may facilitate cognitive processes (Abramson et al., 2009). It was also observed, that calling and sending texts during night was associated with poor perceived health symptoms such as tiredness, rapid exhaustibility, headache and physical ill-being (Schoeni et al., 2015; Van den Bulck, 2007). Other studies showed that frequent mobile phone use was associated with anxiety (Jenaro et al., 2007), unhealthy lifestyle (Ezoe et al., 2009), depression (Yen et al., 2009) and psychological distress (Beranuy et al., 2009). Thus, to address RF-EMF effects of wireless communication devices, the development of a RF-EMF dose measure, which incorporates all exposure relevant factors, is inevitable.


Memory performance was assessed with a standardized, computerized cognitive test battery (IST, Intelligenz-Struktur-Test 2000R (Liepmann et al., 2006)). Verbal and figural memory was measured with the subtest of the IST. In the verbal memory task, word groups have to be memorized in one minute time. After 1 min the study participants give an account of the word groups that have been memorized. In total 10 points can be achieved by remembering the correct word groups. In the figural memory task, pairwise symbols have to be memorized in one minute time. After 1 min one part of the pairwise symbols is shown and the matching part has to be found. A total of 13 points can be achieved. For both the verbal and figural tests, 2 min is given to complete the test. Memory performance is considered as the right number of remembered word groups or symbols, respectively. For the statistical analyses of verbal and figural memory the continuous test score values
were used as outcome. Every test was conducted once at baseline and once at follow-up investigation.

In this study we considered objectively recorded data on mobile phone use collected from the Swiss mobile phone operators as well as self-reported data on wireless communication devices usage obtained from a written questionnaire referring to the 6 months period prior to each examination. In terms of RF-EMF related exposure measures we inquired about call duration with own or any other mobile phone (referred to as duration mobile phone calls), call duration with cordless (fixed line) phone and duration of data traffic on the mobile phone, e. g. for surfing and streaming. The duration of gaming on computers and TV and number of all kind of text messages (SMS, WhatsApp etc.) are not, or only marginally relevant for RF-EMF exposure and were thus inquired to be used as negative exposure control variables in the analyses.

Informed consent to obtain objectively recorded mobile phone use data from the mobile phone operators was given by 234 out of 439 study participants and their parents. This included duration of each call and on which network (GSM or UMTS) it started, number of SMS (text messages) sent per day and amount of volume of data traffic (MB/day). Data were obtained for up to 18 months, 6 months before baseline until follow-up investigation.

A particular strength of this study is the longitudinal design. To the best of our knowledge this is the first longitudinal study on memory performance in adolescents using not only mobile phone call duration as an exposure proxy, but calculating RF-EMF dose measures derived from objectively recorded operator data and propagation modelling. Compared to a cross-sectional design where changes over time cannot be assessed andwhere reverse causality is of concern, longitudinal studies allow for more robust conclusions.

.. Most relevant contributors for the brain dose are calls on the GSM network (on average 93.3% for the whole sample based on self-reported data and 58.7% for the sample with operator data using operator recorded information) followed by calls with the cordless phones (4.2% and 21.0%, respectively). For the whole body dose, calls on the GSM network (on average 66.9% for the whole sample and 19.5% for the sample with operator data), the use of computer/laptop/tablet connected to WLAN (12.0% and 29.1%, respectively) and data traffic on mobile phones over WLAN (8.1% and 22.3%, respectively) counted for the most part. Less important for the dose measures were exposure from radio and TV broadcast transmitters (brain dose: 0.1% and 0.4%, respectively; whole body dose: 0.3% and 0.9%, respectively) and mobile phone base stations (brain dose: 0.6% and 3.5%, respectively; whole body dose: 2.0% and 4.8%, respectively).

... media usage measures which are not, or only marginally associated with RF-EMF were not associated with figural memory performance (e.g. sending text messages, playing games, and duration/volume of data traffic on the mobile phone). On the other hand, mobile and cordless phone use,which involves RF-EMF exposure, tended to be negatively correlated, although not statistically significant, whereas the dose measures were significantly correlated in many models. The relative high correlation between dose measures and self-reported and objectively recorded mobile phone call duration respectively, limits the possibility to disentangle effects due to RF-EMF exposure or due to other factors associated with mobile phone use.

Since we found stronger associations between RF-EMF doses and figural memory but not verbal memory, one could speculate that this might be due to different brain areas involved in the verbal and figural memory tasks. The type of information being processed determines the brain activity during encoding and retrieval and as a consequence brain activity patterns during figural memory tasks differ fromthose observed during verbal memory tasks. During figural memory processes, encoding elicits bilateral prefrontal activity and retrieval increases the activity in bilateral or right-sided temporal regions and in bilateral prefrontal regions (Beason-Held et al., 2005; Roland and Gulyas, 1995; Wagner et al., 1998). During verbal encoding increases in prefrontal and temporal brain activity in the left hemisphere can be seen (Heun et al., 2000; Iidaka et al., 2000; Reber et al., 2002; Strandberg et al 2011) and during verbal retrieval the activity in bilateral or rightsided prefrontal regions, bilateral or left-sided temporal regions and the anterior cingulate are increased (Beason-Held et al., 2005; Buckner et al., 1998; Cabeza et al., 1997). Stronger overall effects observed for figural memory processes predominantly involving the right hemisphere compared to the verbal memory tasks mostly involving the left hemisphere is compatible with the fact that 81.2% of the study participants reported at follow-up to mainly use mobile phones on the right side but only 18.8% on the left side or with no laterality preference. Strikingly, our laterality analyses indicated indeed stronger associations for right side users for the figural memory task whereas the reverse pattern was seen for the verbal task. However, the sample size of the laterality analysis was small for the subgroup with left side or no side preference for mobile phone use (n= 80).

We considered a number of potential confounders and adjusted model estimates were relatively similar to the crude model estimates, which indicates that confounding seems not to have a substantial impact on the results. Nevertheless, we cannot exclude that we have missed a relevant confounder ....

Conclusion

The observed striking pattern with more consistent associations for RF-EMF dose measures compared to usage measures and no indications of associations for negative control exposure variables may indicate that RF-EMF exposure affects the figural memory of adolescents. However, given the complex correlation structure for various exposure measures and the uncertainty in the RF-EMF dose calculation, the observed associations need to be interpreted with caution.