Related posts
--
Evidence for a health risk by RF on humans living around mobile phone base stations
Balmori, A. Evidence for a health risk by RF on humans living around mobile phone base stations: From radiofrequency sickness to cancer. Environmental Research (2022), doi: 10.1016/j.envres.2022.113851.
Abstract
The objective of this work was to perform a complete review of the existing scientific literature to update the knowledge on the effects of base station antennas on humans. Studies performed in real urban conditions, with mobile phone base stations situated close to apartments, were selected. Overall results of this review show three types of effects by base station antennas on the health of people: radiofrequency sickness (RS), cancer (C) and changes in biochemical parameters (CBP). Considering all the studies reviewed globally (n=38), 73.6% (28/38) showed effects: 73.9% (17/23) for radiofrequency sickness, 76.9% (10/13) for cancer and 75.0% (6/8) for changes in biochemical parameters. Furthermore, studies that did not meet the strict conditions to be included in this review provided important supplementary evidence. The existence of similar effects from studies by different sources (but with RF
[radio frequency radiation]
of similar characteristics), such as radar, radio and television antennas, wireless smart meters and laboratory studies, reinforce the conclusions of this review. Of special importance are the studies performed on animals or trees near base station antennas that cannot be aware of their proximity and to which psychosomatic effects can never be attributed.
Excerpts
Introduction: During
the last few decades, hundreds of thousands of mobile phone base
stations and other types of wireless communications antennas have been
installed around the world, in cities and in nature, including protected
natural areas, in addition to pre-existing antennas (television, radio
broadcasting, radar, etc.). Only the aesthetic aspects or urban
regulations have been generally considered in this deployment, while the
biological, environmental and health impacts of the associated
non-ionizing electromagnetic radiation emissions have not been assessed
so far. Therefore, the effects on humans living around these
anthropogenic electromagnetic field sources (antennas) have not been
considered.
In France, there is a significant
contribution of mobile phone base stations in the exposure to
radiofrequency electromagnetic fields (RF-EMF) of urban citizens living
nearby (De Giudici et al., 2021). Some studies from India indicate that
more than 15% of people have levels of EMF strength above 12 V/m due to
their proximity to antennas (Premlal and Eldhose, 2017). Exposure
estimates have shown that RF-EMF from mobile telephone systems is
stronger in urban than in rural areas. For instance, in Sweden the
levels of RF radiation have increased considerably in recent years, both
outdoor and indoor, due to new telecommunication technologies, and the
median power density measured for RF fields between 30 MHz and 3 GHz was
16 μW/m2 in rural areas, 270 μW/m2 in urban areas and 2400 μW/m2
in city areas (Hardell et al., 2018). Total exposure varies not only
between urban and rural areas but also, depending on residential
characteristics, between different floors of a building, with a tendency
for building exposure to increase at higher floors (Breckenkamp et al.,
2012).
Over the past five decades, and more
intensively since the beginning of this century, many studies and
several reviews have been published on the effects of anthropogenic
electromagnetic radiation on humans living around the antennas. The
first studies were carried out with radio and television antennas,
investigating increases in cancer and leukaemia (Milham, 1988;
Maskarinec et al., 1994; Hocking et al., 1996; Dolk et al., 1997a,
1997b; Michelozzi et al., 1998; Altpeter et al., 2000), as well as
around radars (Kolodynski and Kolodynska, 1996; Goldsmith, 1997).
Regarding
base station antennas, there are scientific discrepancies in their
effects: some studies concluded that there are no health-related effects
(e.g. Augner and Hacker, 2009; Blettner et al., 2009; Röösli et al.,
2010; Baliatsas et al., 2016) whereas others found increases in cancer
and other health problems in humans living around antennas (e.g. Santini
et al., 2002; Navarro et al., 2003; Bortkiewicz et al., 2004; Eger et
al., 2004; Wolf and Wolf, 2004; Abdel-Rassoul et al., 2007; Khurana et
al., 2010; Dode et al., 2011; Shinjyo and Shinjyo, 2014; Gandhi et al.,
2015; López et al., 2021; Rodrigues et al., 2021). There is a specific
symptomatology linked to radar and RF exposure at low levels,
characterized by functional disturbances of the central nervous system
(headache, sleep disturbance, discomfort, irritability, depression,
memory loss, dizziness, fatigue, nausea, appetite loss, difficulty in
concentration, dizziness, etc.), that has been termed ‘RF sickness’
(Lilienfeld et al., 1978; Johnson Lyakouris, 1998; Navarro et al.,
2003).
Methods: Only studies performed in real urban conditions, with mobile phone base stations situated close to apartments, were selected. Studies conducted in larger regions with numerous antennas, based on surveys and geographic data, were also included.
Results: The studies that met the selected criteria are presented in chronological order in Table 1, catalogued as Y/N depending on whether or not they found effects. The selected studies cover three types of effects: radiofrequency sickness (RS) (according to Lilienfeld et al., 1978; Johnson Lyakouris, 1998), cancer (C) and changes in biochemical parameters (CBP). Table 1 also includes the authors, year and country, antenna type, study design, diseases and symptoms found/not found and the main conclusions of each study.
Discussion: Considering all the selected studies (n=38), 73.6% (28/38) showed effects: 73.9% (17/23) for radiofrequency sickness, 76.9% (10/13) for cancer and 75.0% (6/8) for changes in biochemical parameters (Figure 1). Therefore, most of the studies carried by research groups from twenty different countries reach the same conclusions.
For the reasons previously explained, the following studies (n=85) were not considered in this review, even though the conclusions of some of these studies will be discussed later due to their importance regarding the similarities of the electromagnetic radiation types involved and the effects found in many cases....
The results of this review show three types of effects by base station antennas on the health of humans: radiofrequency sickness, cancer and changes in biochemical parameters (Fig. 1). From among all these studies, most of them found effects (73.6%). Thus, despite some limitations and differences in study design, statistical measures, risk estimates and exposure categories (Khurana et al., 2010), together they provide a consistent view of the effects on the health of people living in the vicinity of base station antennas.
The International Commission on Non-Ionizing Radiation Protection (ICNIRP) is a private organization that issues exposure guidelines that are then adopted by governments, but it has been accused of having conflicts of interest (Hardell and Carlberg, 2020; Hardell et al., 2021). The ICNIRP (2010, 2020) limits are thousands of times above the levels where effects are recorded for both extremely low frequency and RF man-made EMF and account only for thermal effects, whereas the vast majority of recorded effects are non-thermal. These existing guidelines for public health protection only consider the effects of acute intense (thermal) exposures and do not protect from lower level long-term exposures (Israel et al., 2011; Yakimenko et al., 2011; Blank et al., 2015; Starkey, 2016; Belpomme and Irigaray, 2022). The exposure duration is crucial to assess the induced effects.
Conclusion: In the current circumstances, it seems that the scientific experts in the field are very clear about the serious problems we are facing and have expressed this through important appeals (Blank et al., 2015; Hardell and Nyberg, 2020). However, the media, the responsible organizations (World Health Organization, 2015) and the governments are not transmitting this crucial information to the population, who remain uninformed. For these reasons, the current situation will probably end in a crisis not only for health but also for the technology itself, as it is unsustainable and harmful to the environment and the people.
--
What is the radiation before 5G? A correlation study between
measurements in situ and in real time and epidemiological indicators in
Vallecas, Madrid
Isabel López, Nazario Félix, Marco Rivera, Adrián Alonso, Ceferino Maestú. What is the radiation before 5G? A correlation study between measurements in situ and in real time and epidemiological indicators in Vallecas, Madrid. Environ Res. 2021 Mar;194:110734. doi: 10.1016/j.envres.2021.110734.
AbstractBackground: Exposure of the general population to electromagnetic radiation emitted by mobile phone base stations is one of the greater concerns of residents affected by the proximity of these structures due to the possible relationship between radiated levels and health indicators.
Objectives: This study aimed to find a possible relationship between some health indicators and electromagnetic radiation measurements.
Methods: A total of 268 surveys, own design, were completed by residents of a Madrid neighborhood surrounded by nine telephone antennas, and 105 measurements of electromagnetic radiation were taken with a spectrum analyzer and an isotropic antenna, in situ and in real-time, both outside and inside the houses.
Results: It was shown statistically significant p-values in headaches presence (p = 0.010), nightmares (p = 0.001), headache intensity (p < 0.001), dizziness frequency (p = 0.011), instability episodes frequency (p = 0.026), number of hours that one person sleeps per day (p < 0.001) and three of nine parameters studied from tiredness. Concerning cancer, there are 5.6% of cancer cases in the study population, a percentage 10 times higher than that of the total Spanish population.
Discussion: People who are exposed to higher radiation values present more severe headaches, dizziness and nightmares. Moreover, they sleep fewer hours.
https://pubmed.ncbi.nlm.nih.gov/33434609/
Excerpts
Highlights
• People who are exposed to higher radiation values present more severe headaches, dizziness and nightmares.
• The methodology for obtaining electromagnetic radiation measurements should be reviewed.
• The population continues to receive radiation peaks in distances greater than 200 meters, no one is free from exposure.
Conclusion
In conclusion, the data obtained shows that there is a relationship between the power density of radiation that a person receives at home every day and the presence of headaches, as well as the presence of sleep disorders. People who receive higher doses of radiation sleep less hours and have nightmares at night. In addition, these people suffer from headaches with greater intensity and are more prone to dizziness. In this study, indicators like fainting episodes, presence of tachycardias or instability cannot be related. No conclusive results were found for fatigue, since, out of nine parameters studied, only a statistically significant relationship was found in three of them. The study of how electromagnetic fields affect health, should not only be done in relation to cancer, but also health indicators related to day to day. The methodology for obtaining electromagnetic radiation measurements should be reviewed, the averaged radiation measurements that are described in the CENELEC standard are not the most appropriate, they should be carried out in a narrow band and with maximum peak measurements.
The measured intensity depends fundamentally on the direction of the fundamental radiation beam and not so much on the distance to the antenna. In the beam direction, differences are found in the presence of pathologies with respect to distances, when these are greater than 200 meters. Even at this distance, the population continues to receive radiation peaks, so that no one is free from exposure to these radiation sources.
The need for this study is related to the situation before 5G in terms of electromagnetic radiation rates. This study may be compared with the new radiant procedures that will be adopted in a short time.
--
Research
on Cell Tower Radiation
and
Children and Adolescents’ Health
May 31, 2019
The
following seven studies were found in a search of the EMF-Portal
database for mobile
phone base station (i.e., cell towers) and children or adolescents. For
additional studies of cell tower health effects see http://bit.ly/celltowerEMR.
Summary
of Results
Meo et al
(2019): Higher exposure to cell tower RFR was associated with delayed fine and
gross motor skills, spatial working memory, and attention among adolescents compared
to students exposed to lower levels of cell tower RFR. (13-16 years of age)
Durusoy et
al (2017): An association was found between mobile phone use and headache,
concentration difficulties, fatigue, sleep disturbances and warming of the ear
showing a dose-response. Limited associations were found between vicinity to cell
towers and some general symptoms; however, no association was found with school
RFR levels. (high school students)
Schoeni et al
(2016): In the cohort approach, an association was found between modelled RFR exposure
from fixed site transmitters and tiredness and concentration difficulties in
adolescents. (12-17 years of age)
Guxens et al
(2016): Higher residential RFR exposure from cell towers and presence of indoor
sources was associated with improved inhibitory control and cognitive
flexibility whereas higher personal cordless phone use was associated with reduced
inhibitory control and cognitive flexibility. Higher residential cell tower exposure
was associated with reduced visuomotor coordination whereas improved visuomotor
coordination was associated with residential indoor sources of RFR and higher
personal cell phone use. (5-6 years of age)
Calvente et
al (2016): Children living in higher RFR exposure areas had lower verbal
expression and comprehension scores and more internalizing and total problems,
and were more likely to have obsessive-compulsive and post-traumatic stress
disorders, in comparison to those living in areas with lower RFR exposure.
These associations were stronger when maximum RFR exposures were examined as
opposed to average exposures. (9-11 years of age)
Meo et al
(2015): Students exposed to higher cell tower RFR had a significantly greater risk
of type 2 diabetes mellitus (p = 0.016) relative to others exposed to lower
cell tower RFR. High cell tower RFR was associated with elevated levels of
HbA1c and risk of type 2 diabetes mellitus. (12-17 years of age)
Huss et al
(2015): Children exposed to higher levels of cell tower RFR had worse sleep
duration but fewer sleep disruptions. (7 years of age)
The abstracts for these seven studies: http://bit.ly/childrencelltower
The above summary was prepared for the following news story:
Could A New
Cell Tower Hurt You Financially? CBS13 Investigates
A new cell tower could put a local preschool out of
business.
Julie Watts, CBS Sacramento, June 27-28, 2019 and CBS San Francisco, July 6-7, 2019
09:26 video
--
Mar 10, 2019
Impact of
radiofrequency radiation on DNA damage and antioxidants in peripheral blood
lymphocytes of humans residing near cell towers
Zothansiama,
Zosangzuali M, Lalramdinpuii M, Jagetia GC. Impact of radiofrequency radiation on
DNA damage and antioxidants in peripheral blood lymphocytes of humans residing
in the vicinity of mobile phone base stations. Electromagn Biol Med. 2017 Aug
4:1-11. doi: 10.1080/15368378.2017.1350584.
Abstract
Radiofrequency
radiations (RFRs) emitted by mobile phone base stations have raised concerns on
its adverse impact on humans residing in the vicinity of mobile phone base
stations. Therefore, the present study was envisaged to evaluate the effect of
RFR on the DNA damage and antioxidant status in cultured human peripheral blood
lymphocytes (HPBLs) of individuals residing in the vicinity of mobile phone
base stations and comparing it with healthy controls.
The study
groups were matched on various demographic data including age, gender, dietary
pattern, smoking habit, alcohol consumption, duration of mobile phone use and
average daily mobile phone use.
The RF power
density of the exposed individuals was significantly higher (p < 0.0001)
when compared to the control group. The HPBLs were cultured and the DNA damage
was assessed by cytokinesis blocked micronucleus (MN) assay in the binucleate
lymphocytes. The analyses of data from the exposed group (n = 40), residing
within a perimeter of 80 meters of mobile base stations, showed significantly
(p < 0.0001) higher frequency of micronuclei (MN) when compared to the
control group, residing 300 meters away from the mobile base station/s.
The analysis
of various antioxidants in the plasma of exposed individuals revealed a
significant attrition in glutathione (GSH) concentration (p < 0.01),
activities of catalase (CAT) (p < 0.001) and superoxide dismutase (SOD) (p
< 0.001) and rise in lipid peroxidation (LOO) when compared to controls.
Multiple linear regression analyses revealed a significant association among
reduced GSH concentration (p < 0.05), CAT (p < 0.001) and SOD (p <
0.001) activities and elevated MN frequency (p < 0.001) and LOO (p <
0.001) with increasing RF power density.
My note
All of the recorded RFR power density values in
this study were well below the Federal Communication Commission’s maximum
permissible exposure limits in the U.S. for the general population. These
limits are are 6,000 mW/m2 [milliwatts per square meter] for 900 MHz
and 10,000 mW/m2 for 1800 MHz radiofrequency radiation. In contrast,
the highest recorded value in this study was 7.52 mW/m2 of RFR. The
“exposed individuals” who resided within 80 meters of a cell antenna received
an average of 5.00 mW/m2 of RFR in their bedrooms.
Excerpts
RFR may change the fidelity of DNA as the
increased incidence of cancer has been reported among those residing near
mobile phone base stations (Abdel-Rassonl et al., 2007; Bortkiewicz et al., 2004; Cherry, 2000; Eger et al., 2004; Hardell et al., 1999; Hutter et al., 2006; Wolf and Wolf, 2004). RFR emitted frommobile
base stations is also reported to increase the DNA strand breaks in lymphocytes
of mobile phone users and individuals residing in the vicinity of a mobile base
station/s (Gandhi and Anita, 2005; Gandhi et al., 2014). Exposure of human fibroblasts and rat granulosa cells to RFR
(1800 MHz, SAR 1.2 or 2 W/kg) has been reported to induce DNA single- and
double-strands breaks (Diem et al., 2005). Irreversible DNA damage was also reported in cultured human
lens epithelial cells exposed to microwave generated by mobile phones (Sun et
al., 2006). The adverse health
effects of RFR are still debatable as many studies indicated above have found a
positive correlation between the DNA damage and RFR exposure; however, several
studies reported no significant effect of RFR on DNA strand breaks and
micronuclei formation in different study systems (Li et al., 2001; Tice et al., 2002; McNamee et al., 2003;Maes et al., 2006). The potential
genotoxicity of RFR emitted by mobile phone base stations can be determined by
micronucleus (MN) assay, which is an effective tool to evaluate the genotoxic
or clastogenic effects of physical and chemical agents. This technique has also
been used to quantify the frequencies of radiation-induced MN in human
peripheral blood lymphocytes (HPBLs) (Fenech and Morley, 1985; Jagetia and Venkatesha, 2005; Prosser et al., 1988; Yildirim et al., 2010).
Six mobile phone base stations, operating in the
frequency range of 900 MHz (N = 2) and1800MHz (N = 4), erected in the thickly
populated areas of Aizawl city were selected for the present study… The power
output of all the base stations is 20 W, with their primary beam emitting
radiation at an angle of 20°. Power density measurements (using HF-60105V4,
Germany) were carried out in the bedroom of each participant where they spent
most of the time and hence have the longest constant level of electromagnetic
field exposure. Power density measurement was carried out three times (morning,
midday and evening), and the average was calculated for each residence around
each base station. The main purpose of the measurement of power density was to
ensure that RFR emission from each site did not exceed the safe public limits
and to determine any difference in power density between selected households
that were close to (within 80 m) and far (>300 m) from the mobile phone base
stations. The safety limits for public exposure from mobile phone base stations
are 0.45 W/m2 for 900 MHz and 0.92 W/m2 for 1800 MHz
frequency as per Department of Telecommunications, Ministry of Communications, Government
of India, New Delhi guidelines (DoT, 2012).
… some residences are located
horizontally with the top of the towers from which RFR are emitted, making it
possible to get an exposure at a short distance of 1–20 m, despite being
erected on the rooftop or in the ground. A minimum of two individuals were
sampled from each household and at least five individuals were sampled around
each mobile base station. Individuals sampled around each base station were
matched for their age and gender (Table 1). The exposed group consisted of 40 healthy individuals
who fulfilled the inclusion criteria of being above 18 years of age and
residing in the vicinity of mobile phone base stations (within 80 m radius).
The control group comprised of 40 healthy individuals matched for age and
gender who had been living at least 300 m away from any mobile phone base
stations…. Sampling was also done only from those
residences who did not use microwave oven for cooking, Wifi devices and any
other major source of electromagnetic field as they are known to cause adverse
effects (Atasoy et al., 2013; Avendaño et al., 2012).
The groups matched for most of the
demographic data such as age, gender, dietary pattern, smoking habit, alcohol
consumption, mobile phone usage, duration of mobile phone use and average daily
mobile phone use (Table 2). A highly significant variation (p < 0.0001) was observed for
the distance of household from the base station (40.10 ± 3.02 vs. 403.17 ± 7.98
in m) between exposed and control groups.
The RF power density of the exposed group (2.80–7.52 mW/m2;
average 5.002 ± 0.182 mW/ m2) was significantly higher (p <
0.0001) when compared to the control group (0.014–0.065 mW/m2;
average 0.035 ± 0.002 mW/m2). The highest power density was recorded
at a distance of 1–20 m (6.44 ± 0.31 mW/m2), which is significantly
higher (p < 0.0001) than those at a distance of 21–40 m (4.79 ± 0.33), 41–60
m (4.48 ± 0.22) and 61–80 m (4.61 ± 0.10).
The highest measured power density was
7.52mW/m2. Most of the measured values close to base stations (Table 1) are higher than
that of the safe limits recommended by Bioinitiative Report 2012 (0.5mW/m2), Salzburg resolution 2000 (1 mW/m2) and EU (STOA) 2001 (0.1 mW/m2). However, all the recorded values were well below the
current ICNIRP safe level (4700 mW/m2)
and the current Indian Standard (450 mW/m2).
The exact mechanism of action of RFR in
micronuclei induction and reduced antioxidant status is not apparent. The
possible putative mechanism of generation of DNA damage may be the production
of endogenous free radicals due to continuous exposure. RFR has been reported to produce different free radicals earlier
(Avci et al., 2009; Burlaka et al., 2013; Barcal et al., 2014; Kazemi et al., 2015). Cells possess a number
of compensatory mechanisms to deal with ROS and its effects. Among these are the
induction of antioxidant proteins such as GSH, SOD and CAT. Enzymatic
antioxidant systems function by direct or sequential removal of ROS, thereby
terminating their activities. An imbalance between the oxidative forces and antioxidant
defense systems causes oxidative injury, which has been implicated in various
diseases, such as cancer, neurological disorders, atherosclerosis, diabetes, liver
cirrhosis, asthma, hypertension and ischemia (Andreadis et al., 2003; Comhair et al., 2005; Dhalla et al., 2000; Finkel and Holbrook, 2000; Kasparova et al., 2005; Sayre et al., 2001; Sohal et al., 2002). Because of the significant
decrease in endogenous antioxidants and increased LOO among the exposed group,
the extra burden of free radicals is unlikely to get neutralized, and these surplus
ROS may react with important cellular macromolecules including DNA forming
either DNA adducts or stand breaks, which may be later expressed as micronuclei
once the cell decides to divide. The decline in the antioxidant status may be
also due to the suppressed activity of Nrf2 transcription factor which is
involved in maintaining the antioxidant status in the cells.
The present study has reported that [radiofrequency
radiation] increased the frequency of [micronuclei] and [lipid peroxidation] and
reduced [glutathione] contents, [catalase] and [superoxide dismutase] activities
in the plasma of the exposed individuals. The induction of [micronuclei] may be
due to the increase in free-radical production. The present study demonstrated
that staying near the mobile base stations and continuous use of mobile phones
damage the DNA, and it may have an adverse effect in the long run. The
persistence of DNA unrepaired damage leads to genomic instability which may
lead to several health disorders including the induction of cancer.
--
Biological
effects from exposure to electromagnetic radiation emitted by
cell
tower base stations and other antenna arrays
Levitt BB, Lai
H. Biological effects from exposure to electromagnetic radiation emitted by
cell tower base stations and other antenna arrays. Environmental Reviews.18:
369–395 (2010) doi:10.1139 /A10-018.
Abstract
The siting of
cellular phone base stations and other cellular infrastructure such as
roof-mounted antenna arrays, especially in residential neighborhoods, is a
contentious subject in land-use regulation. Local resistance from nearby
residents and landowners is often based on fears of adverse health effects
despite reassurances from telecommunications service providers that
international exposure standards will be followed.
Both anecdotal reports and
some epidemiology studies have found headaches, skin rashes, sleep
disturbances, depression, decreased libido, increased rates of suicide,
concentration problems, dizziness, memory changes, increased risk of cancer,
tremors, and other neurophysiological effects in populations near base
stations.
The objective of this paper is to review the existing studies of
people living or working near cellular infrastructure and other pertinent
studies that could apply to long-term, low-level radiofrequency radiation (RFR)
exposures. While specific epidemiological research in this area is sparse and
contradictory, and such exposures are difficult to quantify given the
increasing background levels of RFR from myriad personal consumer products,
some research does exist to warrant caution in infrastructure siting. Further
epidemiology research that takes total ambient RFR exposures into consideration
is warranted.
Symptoms reported today may be classic microwave sickness, first
described in 1978. Nonionizing electromagnetic fields are among the fastest
growing forms of environmental pollution. Some extrapolations can be made from
research other than epidemiology regarding biological effects from exposures at
levels far below current exposure guidelines.
Excerpts
In lieu of
building new cell towers, some municipalities are licensing public utility
poles throughout urban areas for Wi-Fi antennas that allow wireless Internet
access. These systems can require hundreds of antennas in close proximity to
the population with some exposures at a lateral height where second- and
third-story windows face antennas. Most of these systems are categorically
excluded from regulation by the U.S. Federal Communications Commission (FCC) or
oversight by government agencies because they operate below a certain power
density threshold. However, power density is not the only factor determining
biological effects from radiofrequency radiation (RFR).
An aesthetic emphasis is often the only perceived control of a
municipality, particularly in countries like America where there is an overriding
federal preemption that precludes taking the “environmental effects” of RFR
into consideration in cell tower siting as stipulated in Section 704 of The
Telecommunications Act of 1996 (USFCC 1996). Citizen resistance,
however, is most often based on health concerns regarding the safety of RFR
exposures to those who live near the infrastructure. Many citizens, especially
those who claim to be hypersensitive to electromagnetic fields, state they
would rather know where the antennas are and that hiding them greatly
complicates society’s ability to monitor for safety.
Industry
representatives try to reassure communities that facilities are many orders of
magnitude below what is allowed for exposure by standards-setting boards and
studies bear that out (Cooper et al. 2006; Henderson and Bangay 2006; Bornkessel et al. 2007).
These include standards by the International Commission on Non-Ionizing
Radiation Protection (ICNIRP) used throughout Europe, Canada, and elsewhere (ICNIRP 1998). The
standards currently adopted by the U.S. FCC, which uses a two-tiered system of
recommendations put out by the National Council on Radiation Protection (NCRP)
for civilian exposures (referred to as uncontrolled environments), and the
International Electricians and Electronics Engineers (IEEE) for professional
exposures (referred to as controlled environments) (U.S. FCC 1997).
The U.S. may eventually adopt standards closer to ICNIRP. The current U.S.
standards are more protective than ICNIRP’s in some frequency ranges so any
harmonization toward the ICNIRP standards will make the U.S. limits more
lenient.
All of the standards currently
in place are based on RFRs ability to heat tissue, called thermal effects. A
longstanding criticism, going back to the 1950s (Levitt 1995), is that such acute heating effects do not
take potentially more subtle non-thermal effects into consideration. And based
on the number of citizens who have tried to stop cell towers from being
installed in their neighborhoods, laypeople in many countries do not find
adherence to existing standards valid in addressing health concerns. Therefore,
infrastructure siting does not have the confidence of the public (Levitt 1998).
The intensity of RFR decreases
rapidly with the distance from the emitting source; therefore, exposure to RFR
from transmission towers is often of low intensity depending on one’s
proximity. But intensity is not the only factor. Living near a facility will
involve long-duration exposures, sometimes for years, at many hours per day.
People working at home or the infirm can experience low-level 24 h exposures.
Nighttimes alone will create 8 hour continuous exposures. The current standards
for both ICNIRP, IEEE and the NCRP (adopted by the U.S. FCC) are for whole-body
exposures averaged over a short duration (minutes) and are based on results
from short-term exposure studies, not for long-term, low-level exposures such
as those experienced by people living or working near transmitting facilities.
For such populations, these can be involuntary exposures, unlike cell phones where
user choice is involved.
The U.S. FCC
has issued guidelines for both power density and SARs. For power density, the
U.S. guidelines are between 0.2–1.0 mW/cm2….
At 100–200 ft
(about 30–60 meters) from a cell phone base station, a person can be
exposed to a power density of 0.001 mW/cm2 (i.e., 1.0 μW/cm2)….
For the
purposes of this paper, we will define low-intensity exposure to RFR of power
density of 0.001 mW/cm2
Many
biological effects have been documented at very low intensities comparable to
what the population experiences within 200 to 500 ft (∼60–150 m)
of a cell tower, including effects that occurred in studies of cell cultures
and animals after exposures to low-intensity RFR. Effects reported include:
genetic, growth, and reproductive; increases in permeability of the blood–brain
barrier; behavioral; molecular, cellular, and metabolic; and increases in
cancer risk….
Ten years ago,
there were only about a dozen studies reporting such low-intensity effects;
currently, there are more than 60. This body of work cannot be ignored. These
are important findings with implications for anyone living or working near a
transmitting facility. However, again, most of the studies in the list are on
short-term (minutes to hours) exposure to low-intensity RFR. Long-term exposure
studies are sparse. In addition, we do not know if all of these reported
effects occur in humans exposed to low-intensity RFR, or whether the reported
effects are health hazards. Biological effects do not automatically mean
adverse health effects, plus many biological effects are reversible. However,
it is clear that low-intensity RFR is not biologically inert. Clearly, more
needs to be learned before a presumption of safety can continue to be made
regarding placement of antenna arrays near the population, as is the case today.
… The
previously mentioned studies show that RFR can produce effects at much lower
intensities after test animals are repeatedly exposed. This may have
implications for people exposed to RFR from transmission towers for long periods
of time.
… The conclusion from this body of work is that effects of
long-term exposure can be quite different from those of short-term exposure.
Since
most studies with RFR are short-term exposure studies, it is not valid to use
their results to set guidelines for long-term exposures, such as in populations
living or working near cell phone base stations.
Numerous
biological effects do occur after short-term exposures to low-intensity RFR but
potential hazardous health effects from such exposures on humans are still not
well established, despite increasing evidence as demonstrated throughout this
paper. Unfortunately, not enough is known about biological effects from
long-term exposures, especially as the effects of long-term exposure can be
quite different from those of short-term exposure. It is the long-term,
low-intensity exposures that are most common today and increasing significantly
from myriad wireless products and services.
People
are reporting symptoms near cell towers and in proximity to other RFR-generating
sources including consumer products such as wireless computer routers and Wi-Fi
systems that appear to be classic “microwave sickness syndrome,” also known as
“radiofrequency radiation sickness.” First identified in the 1950s by Soviet
medical researchers, symptoms included headache, fatigue, ocular dysfunction,
dizziness, and sleep disorders. In Soviet medicine, clinical manifestations
include dermographism, tumors, blood changes, reproductive and cardiovascular
abnormalities, depression, irritability, and memory impairment, among others.
The Soviet researchers noted that the syndrome is reversible in early stages
but is considered lethal over time (Tolgskaya et al. 1973).
The
present U.S. guidelines for RFR exposure are not up to date. The most recent
IEEE and NCRP guidelines used by the U.S. FCC have not taken many pertinent
recent studies into consideration because, they argue, the results of many of
those studies have not been replicated and thus are not valid for standards
setting. That is a specious argument. It implies that someone tried to
replicate certain works but failed to do so, indicating the studies in question
are unreliable. However, in most cases, no one has tried to exactly replicate
the works at all.... In addition,
effects of long-term exposure, modulation, and other propagation characteristics
are not considered. Therefore, the current guidelines are questionable in
protecting the public from possible harmful effects of RFR exposure and the
U.S. FCC should take steps to update their regulations by taking all recent
research into consideration without waiting for replication that may never come
because of the scarcity of research funding. The ICNIRP standards are more
lenient in key exposures to the population than current U.S. FCC regulations.
The U.S. standards should not be “harmonized” toward more lenient allowances.
The ICNIRP should become more protective instead. All standards should be
biologically based, not dosimetry based as is the case today.
Exposure
of the general population to RFR from wireless communication devices and transmission
towers should be kept to a minimum and should follow the “As Low As Reasonably
Achievable” (ALARA) principle. Some scientists, organizations, and local
governments recommend very low exposure levels — so low, in fact, that
many wireless industries claim they cannot function without many more antennas
in a given area. However, a denser infrastructure may be impossible to attain
because of citizen unwillingness to live in proximity to so many antennas. In
general, the lowest regulatory standards currently in place aim to accomplish a
maximum exposure of 0.02 V/m, equal to a power density of 0.0001 μW/cm2,
which is in line with Salzburg, Austria’s indoor exposure value for GSM cell
base stations. Other precautionary target levels aim for an outdoor cumulative
exposure of 0.1 μW/cm2 for pulsed RF exposures where they
affect the general population and an indoor exposure as low as 0.01 μW/cm2 (Sage and Carpenter 2009).
In 2007, The BioInitiative Report, A rationale for a biologically based
public exposure standard for electromagnetic fields (ELF and RF), also made
this recommendation, based on the precautionary principle (Bioinitiative Report 2007).
Citizens and municipalities
often ask for firm setbacks from towers to guarantee safety. There are many
variables involved with safer tower siting — such as how many providers
are co-located, at what frequencies they operate, the tower’s height,
surrounding topographical characteristics, the presence of metal objects, and
others. Hard and fast setbacks are difficult to recommend in all circumstances.
Deployment of base stations should be kept as efficient as possible to avoid
exposure of the public to unnecessary high levels of RFR. As a general
guideline, cell base stations should not be located less than 1500 ft (∼500 m) from the population, and at a
height of about 150 ft (∼50 m).
Several of the papers previously cited indicate that symptoms lessen at that
distance, despite the many variables involved. However, with new technologies
now being added to cell towers such as Wi-Max networks, which add significantly
more power density to the environment, setback recommendations can be a very
unpredictable reassurance at best. New technology should be developed to reduce
the energy required for effective wireless communication.
In addition, regular RFR
monitoring of base stations should be considered….
--
Epidemiological evidence for a health risk from cell towers
Khurana VG,
Hardell L, Everaert J, Bortkiewicz A, Carlberg M, Ahonen M. Epidemiological
evidence for a health risk from mobile phone base stations. Int J Occup Environ
Health. 2010 Jul-Sep;16(3):263-7.
Abstract
Human
populations are increasingly exposed to microwave/radiofrequency (RF) emissions
from wireless communication technology, including mobile phones and their base
stations. By searching PubMed, we identified a total of 10 epidemiological
studies that assessed for putative health effects of mobile phone base
stations. Seven of these studies explored the association between base station
proximity and neurobehavioral effects and three investigated cancer. We found
that eight of the 10 studies reported increased prevalence of adverse
neurobehavioral symptoms or cancer in populations living at distances < 500
meters from base stations. None of the studies reported exposure above accepted
international guidelines, suggesting that current guidelines may be inadequate
in protecting the health of human populations. We believe that comprehensive
epidemiological studies of long-term mobile phone base station exposure are
urgently required to more definitively understand its health impact.
Review Papers