Thursday, February 12, 2015

Welcome to EMR Safety

EMR Safety discusses scientific and policy developments regarding the health risks from exposure to electromagnetic radiation (EMR) produced by cell phones and cordless phones, cell towers, Wi-Fi, Smart Meters, baby monitors and other wireless devices. 

Supplemental information
  • Current news stories: Facebook
  • Twitter updates: @berkeleyprc
  •  News releases:  PRLog

Sunday, February 1, 2015

Overview Articles

"Cellphones and Health" by Joel Moskowitz (Sep/Oct, 2013)

Teléfonos Celulares y Salud por Dr. Joel Moskowitz

"New Federal Policy Needed for Cell Phone and Wireless Radiation Safety"

  Prepared for "Oakland Voices: A Town Hall on Our Right to Communicate" (Jan 9, 2014)

"Cell Phones and Cell Biology: Are We Selling Out?"
   By David Katz, M.D., Huffington Post (Dec 12, 2013)
   Based upon my press releases.

"Some Tips to Reduce Your Exposure to Wireless Radiation" (one page handout)
   Original English version:
   Italian translation (by Associazione Elettrosmog Sicilia):

Mobilize, A Film About Cell Phone Radiation

Best Documentary Feature at the California Independent Film Festival  

Mobilize, a feature-length documentary about cell phone radiation, premiered on September 12, 2014 at the 17th Annual California Independent Film FestivalThe film won the Slate Award for Best Documentary Feature of the year.

The film explores the potential long-term health effects from cell phone radiation and examines recent scientific research and the challenges politicians face trying to adopt precautionary legislation. Featuring interviews with experts, wireless industry representatives and prominent politicians, the film illuminates how industry’s economic and political influence can undermine public health. 

The film was directed by Kevin Kunze and produced by Ellen Marks, Joel Moskowitz, and Devra Davis.

The film can be viewed online or downloaded from Vimeo and Amazon. It is also available on DVD from Disinfo and Amazon. More information about the film is available at

Short Clips

Recent News Stories

Following are some of the recent news stories I contributed to ....

Mobile Phone Update
Kathryn Borg, Times of Malta, Feb 15, 2015
Wearable Technology Poses Newfound Health Risks
Karin Wasteson, GlamMonitor, Feb 7, 2015

Are wireless phones linked with brain cancer risk?
Ronnie Cohen, Reuters Health, Nov 11, 2014

Experts: Why wearable tech could pose health risks
Brooke Crothers, Fox News, Oct 20, 2014
Have an iPhone 6? Make sure you hold it this far away from your body
Hope Gillette, Saludify, Oct 10, 2014

Descubre los Niveles de Radiación de los iPhone 6 y iPhone 6 Plus de Apple
Patricia Alvarado, iPadizate (Spain), Oct 7, 2014

Cellphone Boom Spurs Antenna-Safety Worries
Many Sites Violate Rules Aimed at Protecting Workers From Excessive Radio-Frequency Radiation
Ianthe Jeanne Dugan and Ryan Knutson, Wall Street Journal, Oct. 2, 2014

Precaution or Paranoia? Berkeley May Require Cancer Warning Stickers for Cell Phones 
Sabin Russell, California Magazine, Aug 19, 2014

日用手機30分 腦癌機率爆增3倍 

Wang Zi Yin, Chinese Health Network (Taipei), August 13, 2014


Latest News Releases

Berkeley's Proposed Cell Phone "Right to Know" Ordinance

iPhone 6 SAR: Radiation Levels and Separation Distance

CDC Retracts its Precautionary Health Warning about Cell Phone Radiation

CDC Issues Precautionary Health Warnings about Cell Phone Radiation

FCC: 98 Scientific Experts Demand Stronger Regulation of Cellphone Radiation

Scientists Call on Government to Protect Public from Wireless Radiation Exposure

Hybrid and Electric Automobiles Should Be Re-Designed to Reduce Electromagnetic Radiation Risks

Google Glass Alert: Potential health risks from wireless radiation

Dept. of Interior Attacks FCC regarding Adverse Impact of Cell Tower Radiation on Wildlife

Cell Phone Radiation Label Bill Passes Maine Legislature Before Dying

Cell Phone Use and Prenatal Exposure to Cell Phone Radiation May Cause Headaches in Children

The Top Cell Phone Radiation Safety Stories of 2013

Everything You Wanted to Know about Cell Phone Radiation: Key submissions to the Federal Communications Commission

Belgium Adopts New Regulations to Promote Cell Phone Radiation Safety

French Health Agency Recommends Children and Vulnerable Groups Reduce Cell Phone Radiation Exposure

Brain Cancer Risk Increases with the Amount of Wireless Phone Use

LTE Cell Phone Radiation Affects Brain Activity in Cell Phone Users

Cell Phone Use, Acoustic Neuroma and Cancer of the Pituitary Gland

Most Significant Government Health Report on Mobile Phone Radiation Ever Published

More News Releases

Radio Interviews

Green Street Radio
8:00-9:00 PM EST, Feb 10, 2015
WBAI-FM (99.5 FM) in New York City
Hosts: Doug and Patti Wood
Guest: Joel Moskowitz
Livestreamed at

Cell Phones: Tobacco of the 21st Century 
Health Action, WBAI-FM (New York City), Feb 4, 2015

"Your Call: What do you want to know about cell phone radiation?"
Host: Rose Aguilar, Your Call, KALW - FM, Sep 16, 2014  (49 minutes)
Guests: Joel Moskowitz, UC Berkeley; Kevin Kunze, "Mobilize" Director

"Mobilize: A Film on Cell Phone Radiation”
Host:  Brian Edwards-Tiekert, Upfront, KPFA - FM, Sep 11, 2014 (25 minutes; starts at 33:50)
Guest: Joel Moskowitz, UC Berkeley

"Dr. Joel Moskowitz Joins the Show"  (52 minutes)
Boil the Frog Slowly Radio and Patient Safety Radio, Aug 1, 2014

"Wireless Revolution: Research/Policy Implications" 
Host: Layna Berman, Your Own Health and Fitness, KPFA - FM, Apr 22, 2014 (1:00-2:00 PM)
Guest: Joel M. Moskowitz, UC Berkeley

"Today on Your Call: What are 'best practices' for using digital devices?"
Host: Ali Budner, Your Call, KALW - FM, Mar 13, 2014  (53 minutes)
Guests:  Joel Moskowitz, UC Berkeley
                Levi Felix, founder The Digital Detox and director of Camp Grounded

"Cell Phones and Health"
KPFA-FM, Jan 31, 2014 (1:00-1:30 PM)
Moderator: Laura Garzon Chica
Guests:  Josh Hart, Director, StopSmartMeters
               Joel Moskowitz, UC Berkeley
               Kevin Kunze, Director, "Mobilize"

"What Do You Need to Know about Cellphone Radiation?"
An interview on KAHI radio news (Nov 22, 2013) (11 minutes).

Download at: 

"Everything you and your 'Friends and Neighbors' need to know about cellphone radiation and how to protect yourselves"
A 2-part program aired on Calvary Radio Network in Dec, 2013 (50 minutes).

Download at:


"Mobile Phone Use and Cancer Risk: Research on a Group 2B Carcinogen"
Joel Moskowitz, Webinar for CDC Work Group on Cancer Prevention (Oct 29, 2014)
Audio: or

"Mobile Phone Radiation and Health: Recent Research and Policy Developments"
Joel Moskowitz, Haas School of Business, University of California, Berkeley (Jun 19, 2014)

"Brain Tumor Risk from Wireless Phone Use: Recent Research and Policy Implications"
Joel Moskowitz, Commonwealth Club of California (Part II: Dec 9, 2013) 
Video: or

"Expert Roundtable: Skeptical about Cell Phones and Health?"
Forum at Commonwealth Club of California (Dec 9, 2013)
Other presentations will be available soon. 
Agenda :

"Cell Phones & Brain Tumors What Does the Science Show?"
Joel Moskowitz, Commonwealth Club of California (Part I: Nov 18, 2010)
Video (15 minutes):

Hybrid & Electric Cars: Electromagnetic Radiation Risks

Hybrid and electric cars may be cancer-causing as they emit extremely low frequency (ELF) electromagnetic radiation (EMR) or magnetic fields. Recent studies of the levels of EMR emitted by these automobiles have claimed either that they pose a cancer risk for the vehicles' occupants or they are safe.

Unfortunately, the little research conducted on this issue has been industry-funded by companies with vested interests on one side of the issue or the other which makes it difficult to know which studies are trustworthy. 

Meanwhile, numerous peer-reviewed laboratory studies conducted over several decades have found biologic effects from very limited exposures to ELF EMR. These studies suggest that the EMR guidelines established by the self-appointed, International Commission on Non-Ionizing Radiation Protection (ICNIRP) are inadequate to protect our health. Thus, even if EMR measurements do not exceed the ICNIRP guidelines, occupants of hybrid and electric automobiles may be at increased risk for cancer and other health problems.

Given that magnetic fields have been considered "possibly carcinogenic" in humans by the International Agency for Research on Cancer of the World Health Organization since 2001, the precautionary principle dictates that we should design consumer products to minimize consumers’ exposure to ELF EMR. This especially applies to hybrid and electric automobiles as drivers and passengers spend considerable amounts of time in these vehicles and health risks increase with the duration of exposure.

In January of this year, SINTEF, the largest independent research organization in Scandinavia, proposed manufacturing design guidelines that could reduce the magnetic fields in electric vehicles (see below).  All automobile manufacturers should follow these guidelines to ensure their customers' safety. 

The public should demand that governments adequately fund high-quality research on the health effects of electromagnetic radiation that is independent of industry to eliminate any potential conflicts of interest. In the U.S., a major national research and education initiative could be funded with as little as a 5 cents a month fee on mobile phone subscribers.

Following are summaries and links to several news articles on this topic. 


Note: Many experts believe the ICNIRP guidelines for maximum general public exposure to magnetic fields do not adequately protect the public from health risks.

Characterization of Extremely Low Frequency Magnetic Fields from Diesel, Gasoline and Hybrid Cars under Controlled Conditions

Hareuveny R, Sudan M, Halgamuge MN, Yaffe Y, Tzabari Y, Namir D, Kheifets L. Characterization of Extremely Low Frequency Magnetic Fields from Diesel, Gasoline and Hybrid Cars under Controlled Conditions. Int J Environ Res Public Health. 2015 Jan 30;12(2):1651-1666.

This study characterizes extremely low frequency (ELF) magnetic field (MF) levels in 10 car models.
Extensive measurements were conducted in three diesel, four gasoline, and three hybrid cars, under similar controlled conditions and negligible background fields.

Averaged over all four seats under various driving scenarios the fields were lowest in diesel cars (0.02 μT), higher for gasoline (0.04-0.05 μT) and highest in hybrids (0.06-0.09 μT), but all were in-line with daily exposures from other sources. Hybrid cars had the highest mean and 95th percentile MF levels, and an especially large percentage of measurements above 0.2 μT. These parameters were also higher for moving conditions compared to standing while idling or revving at 2500 RPM and higher still at 80 km/h compared to 40 km/h. Fields in non-hybrid cars were higher at the front seats, while in hybrid cars they were higher at the back seats, particularly the back right seat where 16%-69% of measurements were greater than 0.2 μT.

As our results do not include low frequency fields (below 30 Hz) that might be generated by tire rotation, we suggest that net currents flowing through the cars' metallic chassis may be a possible source of MF. Larger surveys in standardized and well-described settings should be conducted with different types of vehicles and with spectral analysis of fields including lower frequencies due to magnetization of tires.
Previous work suggests that major sources of MF in cars include the tires and electric currents [4,5]. The level of MF exposure depends on the position within the vehicle (e.g., proximity to the MF sources) and can vary with different operating conditions, as changes to engine load can induce MFs through changes in electric currents. Scientific investigations of the levels of MF in cars are sparse: only one study evaluated fields only in non-hybrid cars [6], two studies of hybrid cars have been carried out [4,7], and few studies have systematically compared exposures in both hybrid and non-hybrid cars [8,9,10,11,12], some based on a very small number of cars 
In hybrid cars, the battery is generally located in the rear of the car and the engine is located in the front. Electric current flows between these two points through cables that run underneath the passenger cabin of the car. This cable is located on the left for right-hand driving cars and on the right for left-hand driving cars. Although in principle the system uses direct current (DC), current from the alternator that is not fully rectified as well as changes to the engine load, and therefore the current level, can produce MFs which are most likely in the ELF range. While most non-hybrid cars have batteries that are located in the front, batteries in some of them are located in the rear of the car, with cables running to the front of the car for the electrical appliances on the dashboard. In this study, all gasoline and diesel cars had batteries located in the front of the car.
...the percent of time above 0.2 µT was the most sensitive parameter of the exposure. Overall, the diesel cars measured in this study had the lowest MF readings (geometric mean less than 0.02 μT), while the hybrid cars had the highest MF readings (geometric mean 0.05 μT). Hybrid cars had also the most unstable results, even after excluding outliers beyond the 5th and 95th percentiles. With regard to seat position, after adjusting for the specific car model, gasoline and diesel cars produced higher average MF readings in the front seats, while hybrid cars produced the highest MF readings in the back right seat (presumably due to the location of the battery). Comparing the different operating conditions, the highest average fields were found at 80 km/h, and the differences between operating conditions were most pronounced in the back right seat in hybrid cars. Whether during typical city or highway driving, we found lowest average fields for diesel cars and highest fields for hybrid cars.
Previous works suggest that the magnetization of rotating tires is the primary source of ELF MFs in non-hybrid cars [5,15]. However, the relatively strong fields (on the order of a few μT within the car) originating from the rotating tires are typically at 5–15 Hz frequencies, which are filtered by the EMDEX II meters. ....
Overall, the average MF levels measured in the cars’ seats were in the range of 0.04–0.09 μT (AM) and 0.02–0.05 μT (GM). These fields are well below the ICNIRP [17] guidelines for maximum general public exposure (which range from 200 μT for 40 Hz to 100 μT for 800 Hz), but given the complex environments in the cars, simultaneous exposure to non-sinusoidal fields at multiple frequencies must be carefully taken into account. Nevertheless, exposures in the cars are in the range of every day exposure from other sources. Moreover, given the short amount of time that most adults and children spend in cars (about 30 minutes per day based on a survey of children in Israel (unpublished data), the relative contribution of this source to the ELF exposure of the general public is small. However, these fields are in addition to other exposure sources. Our results might explain trends seen in other daily exposures: slightly higher average fields observed while travelling (GM = 0.096 μT) relative to in bed (GM = 0.052 μT) and home not in bed (GM = 0.080 μT) [1]. Similarly, the survey of children in Israel found higher exposure from transportation (GM = 0.092 µT) compared to mean daily exposures (GM = 0.059 µT). Occupationally, the GM of time-weighted average for motor vehicle drivers is 0.12 μT [18].
Open access paper:


Design guidelines to reduce the magnetic field in electric vehicles

SINTEF, Jan 6, 2014

Based on the measurements and on extensive simulation work the project arrived on the following design guidelines to, if necessary, minimize the magnetic field in electric vehicles.

  • For any DC cable carrying significant amount of current, it should be made in the form of a twisted pair so that the currents in the pair always flow in the opposite directions. This will minimise its EMF emission.
  • For three-phase AC cables, three wires should be twisted and made as close as possible so as to minimise its EMF emission.
  • All power cables should be positioned as far away as possible from the passenger seat area, and their layout should not form a loop. If cable distance is less than 200mm away from the passenger seats, some forms of shielding should be adopted.
  • A thin layer of ferromagnetic shield is recommended as this is cost-effective solution for the reduction of EMF emission as well EMI emission.
  • Where possible, power cables should be laid such a way that they are separated from the passenger seat area by a steel sheet, e.g., under a steel metallic chassis, or inside a steel trunk.
  • Where possible, the motor should be installed farther away from the passenger seat area, and its rotation axis should not point to the seat region.
  • If weight permits, the motor housing should be made of steel, rather than aluminium, as the former has a much better shielding effect.
  • If the distance of the motor and passenger seat area is less than 500mm, some forms of shielding should be employed. For example, a steel plate could be placed between the motor and the passenger seat region
  • Motor housing should be electrically well connected to the vehicle metallic chassis to minimise any electrical potential.
  • Inverter and motor should be mounted as close as possible to each other to minimise the cable length between the two.
  • Since batteries are distributed, the currents in the batteries and in the interconnectors may become a significant source for EMF emission, they should be place as far away as possible from the passenger seat areas. If the distance between the battery and passenger seat area is less than 200mm, steel shields should be used to separate the batteries and the seating area.
  • The cables connecting battery cells should not form a loop, and where possible, the interconnectors for the positive polarity should be as close as possible to those of the negative polarity.


Magnetic Fields in Electric Cars Won't Kill You

Jeremy Hsu, IEEE Spectrum, May 5, 2014


“The study, led by SINTEF, an independent research organization headquartered in Trondheim, Norway, measured the electromagnetic radiation—in the lab and during road tests—of seven different electric cars, one hydrogen-powered car, two gasoline-fueled cars and one diesel-fueled car. Results from all conditions showed that the exposure was less than 20 percent of the limit recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP).”

“Measurements taken inside the vehicles—using a test dummy with sensors located in the head, chest and feet—showed exposure at less than 2 percent of the non-ionizing radiation limit at head-height. The highest electromagnetic field readings—still less than 20 percent of the limit—were found near the floor of the electric cars, close to the battery. Sensors picked up a burst of radiation that same level, when the cars were started.”


Mythbuster: EMF levels in hybrids
Consumer Reports News: August 4, 2010


“Some concern has been raised about the possible health effects of electromagnetic field radiation, known as EMF, for people who drive in hybrid cars. While all electrical devices, from table lamps to copy machines, emit EMF radiation, the fear is that hybrid cars, with their big batteries and powerful electric motors, can subject occupants to unhealthy doses. The problem is that there is no established threshold standard that says what an unhealthy dose might be, and no concrete, scientific proof that the sort of EMF produced by electric motors harms people

“We found the highest EMF levels in the Chevrolet Cobalt, a conventional non-hybrid small sedan.”

[The peak EMF readings at the driver’s feet ranged from 0.5 mG (milligauss) in the 2008 Toyota Highlander to 30 mG in the Chevrolet Cobalt. The hybrids tested at 2-4 mG. Here are some highlights from the tests. EMF readings were highest in the driver’s foot well and second-highest at the waist, much lower higher up, where human organs might be more susceptible to EMF.

“To get a sense of scale, though, note that users of personal computers are subject to EMF exposure in the range of 2 to 20 mG, electric blankets 5 to 30 mG, and a hair dryer 10 to 70 mG, according to an Australian government compilation. In this country, several states limit EMF emissions from power lines to 200 mG. However, there are no U.S. standards specifically governing EMF in cars.”

“In this series of tests, we found no evidence that hybrids expose drivers to significantly more EMF than do conventional cars. Consider this myth, busted.”


Israel Preps World’s First Hybrid Car Radiation Scale

Tal Bronfer, the truth about cars, March 1, 2010


“The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) recommends a limit of 1,000 mG (milligauss) for a 24 hour exposure period. While other guidelines pose similar limits, the International Agency for Research on Cancer (IARC) deemed extended exposure to electromagnetic fields stronger than 2 mG to be a “possible cause” for cancer. Israel’s Ministry of Health recommends a maximum of 4 mG.”

“Last year, Israeli automotive website Walla! Cars conducted a series of tests on the previous generation Toyota Prius, Honda Insight and Honda Civic Hybrid, and recorded radiation figures of up to 100 mG during acceleration. Measurements also peaked when the batteries were either full (and in use) or empty (and being charged from the engine), while normal driving at constant speeds yielded 14 to 30 mG on the Prius, depending on the area of the cabin.

The Ministry of Environmental Protection is expected to publish the results of the study this week. The study will group hybrids sold in Israel into three different radiation groups, reports Israel’s Calcalist. It’s expected that the current-gen Prius will be deemed ‘safe’, while the Honda Insight and Civic Hybrid (as well as the prev-gen Prius) will be listed as emitting ‘excessive’ radiation.”


Fear, but Few Facts, on Hybrid Risk

Jim Motavalli, New York Times, Apr 27, 2008


“... concern is not without merit; agencies including the National Institutes of Health and the National Cancer Institute acknowledge the potential hazards of long-term exposure to a strong electromagnetic field, or E.M.F., and have done studies on the association of cancer risks with living near high-voltage utility lines.

While Americans live with E.M.F.’s all around — produced by everything from cellphones to electric blankets — there is no broad agreement over what level of exposure constitutes a health hazard, and there is no federal standard that sets allowable exposure levels. Government safety tests do not measure the strength of the fields in vehicles — though Honda and Toyota, the dominant hybrid makers, say their internal checks assure that their cars pose no added risk to occupants.”

“A spokesman for Honda, Chris Martin, points to the lack of a federally mandated standard for E.M.F.’s in cars. Despite this, he said, Honda takes the matter seriously. “All our tests had results that were well below the commission’s standard,” Mr. Martin said, referring to the European guidelines. And he cautions about the use of hand-held test equipment. “People have a valid concern, but they’re measuring radiation using the wrong devices,” he said.”

“Donald B. Karner, president of Electric Transportation Applications in Phoenix, who tested E.M.F. levels in battery-electric cars for the Energy Department in the 1990s, said it was hard to evaluate readings without knowing how the testing was done. He also said it was a problem to determine a danger level for low-frequency radiation, in part because dosage is determined not only by proximity to the source, but by duration of exposure. “We’re exposed to radio waves from the time we’re born, but there’s a general belief that there’s so little energy in them that they’re not dangerous,” he said.”

Thyroid Cancer & Mobile Phone Use

(New study added below -- Feb 5, 2015)

Korea's Thyroid-Cancer “Epidemic” — Screening and Overdiagnosis (and wireless phone use?)

November 5, 2014

According to today's issue of the New England Journal of Medicine, South Korea has experienced a thyroid cancer epidemic in recent years (see paper and Figure below). 

"Thyroid cancer is now the most common type of cancer diagnosed in South Korea."

The authors of this paper attribute the "epidemic" to a government-sponsored cancer screening program. As evidence, they report,

"There was a strong correlation between the proportion of the population screened in a region in 2008 and 2009 and the regional incidence of thyroid cancer in 2009. Although the aggregate correlation could be vulnerable to the ecologic fallacy, the finding of significant positive correlations in each of eight age- and sex-based groups suggests that the finding is more robust."

That widespread screening identifies more cancer is not surprising. This could at least partly explain the increasing incidence of thyroid cancer observed in South Korea, and nine other countries including the U.S.

The authors argue that most of these cancers are not life-threatening and advise other countries against widespread screening for thyroid cancer:

"The experience with thyroid-cancer screening in South Korea should serve as a cautionary tale for the rest of the world. During the past two decades, multiple countries have had a substantial increase in thyroid-cancer incidence without a concomitant increase in mortality. According to the Cancer Incidence in Five Continents database maintained by the International Agency for Research on Cancer, the rate of thyroid-cancer detection has more than doubled in France, Italy, Croatia, the Czech Republic, Israel, China, Australia, Canada, and the United States. The South Korean experience suggests that these countries are seeing just the tip of the thyroid-cancer iceberg — and that if they want to prevent their own “epidemic,” they will need to discourage early thyroid-cancer detection."

I'm not sure the answer is to simply ignore these cancers, but I don't want to address that debate here.

Rather, I would like to focus on the question why has thyroid cancer become so prevalent in at least ten nations? According to the American Cancer Society, although some thyroid cancers are linked to exposure to ionizing radiation, "the exact cause of most thyroid cancers is not yet known."

Could exposure to the electromagnetic radiation (RF and ELF) emitted by cell phones and cordless phones be contributing to this worldwide thyroid cancer epidemic? Isn't time for our government to fund research on the risk factors underlying this epidemic?

Hyeong Sik Ahn, Hyun Jung Kim, H. Gilbert Welch. Korea's Thyroid-Cancer “Epidemic” — Screening and Overdiagnosis. N Engl J Med 2014; 371:1765-1767 November 6, 2014DOI: 10.1056/NEJMp1409841


Is mobile phone use contributing to increased incidence of thyroid cancer?

July 9, 2014

The incidence of thyroid cancer has been increasing rapidly in recent years in many countries including the U.S., Canada, and Israel.

A headline in Haaretz a year ago March reads, "
Israeli scientists find possible link between cellphone use, thyroid cancer." 

In response to questions posed to me on this topic today from several individuals, I did a PubMed search. Although I did not find any epidemiologic studies that examined the association between mobile phone use and thyroid cancer in humans, I found almost a dozen published papers that have studied the effects of cell phone radiation on thyroid function. Apparently, case-control research on this topic is warranted.

The abstracts from 11 published papers that examined the effects of exposure to cell phone radiation on thyroid function appear below. Please let me know if you are aware of important studies that I missed, and I will supplement this list.  I did not include studies that examined exposure to power frequency radiation.

But first, here is the 2013 news article  ...

Israeli scientists find possible link between cellphone use, thyroid cancer

Dan Even, Haaretz, Mar 6, 2013

Israeli scientists have reported preliminary findings of a possible link between the radiation from cellphones and thyroid cancer. There has been a steep rise in rates of thyroid cancer in recent years in Western countries.

The Israeli research, conducted at Beilinson Hospital in Petah Tikva and at Tel Aviv University, identified evidence for the first time of the possible connection between the rise in thyroid cancer cases to the increased exposure to radiation emitted by cellphones.

In one experiment, human thyroid cells collected from healthy patients were subjected to radiation with a device, designed for the study, that simulates the electromagnetic radiation emitted by cellphones. The irradiated thyroid cells proliferated at a much higher, statistically significant rate than non-irradiated cells in the control group. A second experiment, using different methods and materials, gave similar results.

The research was conducted in the Felsenstein Medical Research Center, part of the Sackler Faculty of Medicine at Tel Aviv University and the Rabin Medical Center. Prof. Raphael Feinmesser, head of Beilinson’s Ear, Nose and Throat Department was the lead researcher. The findings will be presented for the first time this weekend at the annual conference of the Israeli Society of Otolaryngology, Head and Neck Surgery, in Eilat.

“The findings are the first evidence of changes in thyroid cells in response to electromagnetic radiation,” said Feinmesser. “But drawing sweeping conclusions as to a connection between cellphone radiation and thyroid cancer is still far off.”

The scientific community is divided as to the connection between cellular radiation and cancer. One opinion is that because cellular radiation is non-ionizing and incapable of causing changes in cellular DNA, it cannot cause cancer. But in recent years evidence has mounted from epidemiological studies indicating a relationship between increased exposure to cellular radiation and cancerous growths, especially in the brain and the salivary glands.

“The thyroid gland is located in the neck, but the area is located the same distance from the ear as the regions of the brain where [cancerous] growths have been diagnosed as being related to the use of the [cellular] devices. This is a region that is not far from the center of the device’s radiation,” said Feinmesser.

The incidence of thyroid cancer has been on the rise in Israel for more than a decade, which matches the rise in the use of cellphones. Thyroid cancer is three times more common in women than men. It is the fourth most common form of cancer among Jewish women in Israel, at 16.6 cases per 100,000 people. The three most common forms of cancer for women are cancer of the breast, colon and cervix. Among Israeli Arab women the rate of thyroid cancer is 11.6 cases per 100,000, and it is the third most common cancer. From 1990 to 2007 there was a 67-percent rise in thyroid cancer rates among Jewish women, and a 250 percent increase among Arab women, Health Ministry figures show. For men, the rise from 2000 is more moderate, but still shows a 41 percent increase in thyroid cancer rates for Jewish men.

“One of the explanations is that the rise is related to better technical methods of early detection of these growths, which have been developed in recent years. But other research shows that even after neutralizing this influence a rise in these growths still remains,” said Feinmesser.

Just this week it was reported that mobile operator Partner Communications (Orange ) reached a settlement with a customer who claims he contracted cancer after using the company’s cellphones. The customer, who is in his 50s, sued Partner in May, claiming that intensive use of the device resulted in an aggressive lymphoma near his left ear. Partner agreed to pay NIS 400,000 in an out-of-court settlement.”


Hilly, Ohad; Silva, Verónica; Mizrachi, Aviram; Ariel, Ortal; Raiter, Annat; Hauptman, Yirmi; Hardy, Britta; Feinmesser, Raphael. EFFECT OF NON-IONIZING ELECTROMAGNETIC RADIATION AT MOBILE PHONE FREQUENCY ON HUMAN THYROID CELLS. Abstract from the World Thyroid Cancer Congress in Toronto 2013.

Otolaryngology Head and Neck Surgery, Rabin Medical Center, Petah Tikva, Israel; 2Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel; 3Gal Safe Ltd., Or Yehuda, Israel

Background/Purpose: The aim of this study was to examine the effect of non-ionizing electromagnetic radiation (NIER) at mobile phone frequency on human thyroid cells.

Methods: We cultured samples of normal thyroid tissue and subsequently exposed the cultured thyrocytes to NIER for 3 hours. NIER effects were evaluated in terms of proliferation using a cell viability assay and immunohistochemistry.

Results: We found that NIER exposure for 3 hours has lead to an increased proliferation of thyrocytes in cell viability assay (p=0.007). This result was confirmed by immunohistochemistry with antibodies against Ki67.

Discussion & Conclusion: In this study we present for the first time an in vitro evaluation of NIER  effects on human thyroid cells. Our results suggest a proliferative effect of NIER on human thyrocytes, an effect that may link NIER exposure with potential carcinogenesis.

PubMed Search Results  (in chronological order)

Exposure to non-ionizing radiation provokes changes in rat thyroid morphology and expression of HSP-90

Misa-Agustiño MJ, Jorge-Mora T, Jorge-Barreiro FJ, Suarez-Quintanilla J, Moreno-Piquero E, Ares-Pena FJ, López-Martín E.Exposure to non-ionizing radiation provokes changes in rat thyroid morphology and expression of HSP-90. Exp Biol Med (Maywood). 2015 Feb 2. pii: 1535370214567611. [Epub ahead of print]


Non-ionizing radiation at 2.45 GHz may modify the morphology and expression of genes that codify heat shock proteins (HSP) in the thyroid gland. Diathermy is the therapeutic application of non-ionizing radiation to humans for its beneficial effects in rheumatological and musculo-skeletal pain processes.

We used a diathermy model on laboratory rats subjected to maximum exposure in the left front leg, in order to study the effects of radiation on the nearby thyroid tissue. Fifty-six rats were individually exposed once or repeatedly (10 times in two weeks) for 30 min to 2.45 GHz radiation in a commercial chamber at different non-thermal specific absorption rates (SARs), which were calculated using the finite difference time domain technique. We used immunohistochemistry methods to study the expression of HSP-90 and morphological changes in thyroid gland tissues.

Ninety minutes after radiation with the highest SAR, the central and peripheral follicles presented increased size and the thickness of the peripheral septa had decreased. Twenty-four hours after radiation, only peripheral follicles radiated at 12 W were found to be smaller. Peripheral follicles increased in size with repeated exposure at 3 W power.

Morphological changes in the thyroid tissue may indicate a glandular response to acute or repeated stress from radiation in the hypothalamic-pituitary-thyroid axis. Further research is needed to determine if the effect of this physical agent over time may cause disease in the human thyroid gland.

The thyroid gland is one of the most superficial vital organs and possibly more vulnerable to EMFs.7 Chronic exposure to microwaves at a RF of 2.45 GHz has been shown to significantly affect the hypothalamus–pituitary–thyroid (HPT) axis, provoking changes in body temperature, behavior, and thyroid hormone concentrations.8 Alterations in human and animal levels of thyroid stimulating hormone and other thyroid hormones have also been reported with chronic exposure to frequencies used in mobile telephones, such as 900 MHz.
Heat shock protein (HSP) 90 is a chaperone protein regulating several client proteins involved in thyroid cancer development and the level of expression is higher than in normal tissues. This chaperone has emerged as an exciting target in the development of cancer chemotherapeutics.11,12 Recently, we discovered that repeated, acute subthermal radiation for 30 min at 2.45 GHz can alter cellular stress levels in rat hypothalamus13 and thyroid gland,14 without initially altering apoptotic capacity. Surprisingly, in spite of frequent direct and indirect exposure to non-ionizing radiation in human environments and indications that radiation provokes a degree of stress in thyroid cells, there is very little research describing morphological changes that point to precocious re-adjustments of the mammalian thyroid gland after close-range exposure to non-ionizing radiation at 2.45 GHz.
Group A: single exposure and studied after 90 min (n = 18): The rats were divided into three subgroups (n = 6); each rat was exposed to 30 mina of microwave radiation at three levels: 0 (control), 3, and 12 W.b The rats were kept alive for 90 minc and then euthanized and perfused with fixative.
Group B: single exposure and studied after 24 h (n = 18): The rats were divided into three subgroups (n = 6); each rat was exposed to 30 min of microwave radiation at three levels: 0 (control), 3, and 12 W.b The rats were kept alive for 24 hc and then euthanized and perfused with fixative.
Group C: repeated exposure and studied after 90 min (n = 20): Rats in this group were irradiated at 3 W for 30 min/day, for a total of 10 times in a two-week period. On the last day of exposure, the rats were irradiated and after 90 min were euthanized and perfused with fixative. They were then tested for HSP-90 expression. In the non-irradiated control group (n = 10), rats were immobilized for each of the 10 sessions and euthanized on the last day, following the same protocol as the irradiated animals.
... we found that the interaction of non-ionizing radiation at a frequency of 2.45 GHz caused modifications in the morphology of the thyroid gland tissue and in the distribution of the constituent cellular stress protein known as HSP-90. The morphology of the thyroid gland underwent the following changes due to radiation:
The size of central and peripheral follicles increased and the thickness of the peripheral septa decreased 90 min after single exposure. After 24 h, central follicles had decreased in size, but hypertrophy was still present in the peripheral follicles of thyroid gland exposed to the higher SAR level.
Repeated stimulus of the thyroid gland at the lower SAR level triggered adaptation and an increase in the size of peripheral follicles.
The observed localization of the expression of this protein in the supportive tissue of the septa, specifically in the fibers and in the capsular and lobular membranes suggests that this stress protein constitutes an important component of glandular architecture and is probably dedicated to maintaining glandular structure and morphology. The distribution of HSP-90 in thyroid membranes and cells was diminished after single (if the SAR and time after radiation increased) and repeated exposure to radiation.
Our work describes for the first time the effects of single and repeated exposure to 2.45 GHz RF on the morphology of Sprague-Dawley rat thyroid gland. Published studies to date have described histopathological alterations in thyroid tissue of experimental animals exposed to extremely low frequency (ELF) (50 Hz) or in thyroid hormone levels in humans or animals exposed at ELF or RF.
We chose to experimentally examine small animals at 2.45 GHz RF because of the wide range of potential applications, from therapeutics to tissue diathermy (this frequency resonates with H2O, facilitating greater penetration) to telecommunications involving WIFI, UMTS, or Bluetooth. We used subthermal SAR levels of 0.102 ± 12.10–3 and 0.429 ± 12.10–3 W/kg at 2.45 GHz in the right front leg, near the thyroid, to ensure that the non-ionizing radiation would not cause direct thermal effects to the gland.  Research of this type requires immobilization of the animal, which itself has been found to generate a certain amount of stress. It must also be noted that radiation can catalyze single or repetitive activation of different neuron populations in rat hypothalamus, which intervene in the HPT axis. We cannot therefore assume that the effects of non-ionizing radiation to the thyroid are limited to its tissues; it must be treated as part of a system with multiple, interacting entry points. Other studies have described how microwave radiation at 2.45 GHz affects brain physiopathology and provokes changes in cerebral functioning and behavior. In the present study, the thyroid system is directly or indirectly affected by alterations in the HPT axis as well as by biochemical changes in the thyroid itself due to exposure to microwaves.
Recent research has described how EMFs can constitute external sources for the formation of free radicals in blood cells, the brain, spermatozoids,and myocardial tissue. The thyroid gland is by nature an oxidative organ, and when additional oxidative abuse is caused by exogenous pro-oxidants (ionizing radiation would be the most significant), damage to the macromolecules in the gland increases, possibly leading to thyroid pathology or cancer. In spite of this, a direct relation between thyroid cancer and exposure to EMFs has not yet been established. However, the search is ongoing for biomarkers in thyroid diseases that would make early detection, diagnosis, and intervention possible. HSP-90 is physiologically essential in cellular processes such as hormone signaling and control, proliferation, and differentiation of the cellular cycle. In prior studies, we described a decrease in HSP-90 and 70 due to acute radiation at 2.45 GHz in the thyroid gland, with no apparent effect in the apoptotic activity of thyroid cells. HSP-90 is known to play a modulatory role against thyroid cancer due to its primarily antiapoptotic function. In the present work, we have observed how, after 30 min exposure, the immunoreactivity of HSP-90 is histologically distributed throughout the thyroid gland in places where kinase proteins had previously been activated, between the capsular and lobular membranes and in the follicular and parafollicular cells.

... cellular damage in the thyroid gland was directly related to the SAR level and/or number of exposures applied to the tissue.

... In the present experiment, exposure of rat thyroid gland to RF at 2.45 GHz and 0.102 ± 12.10–3 SAR increased HSP-90 marking in the parafollicular cells. However, HSP-90 stress immunomarking decreased in the parafollicular cells at 0.429 ± 12.10–3 SAR or with repeated exposure (see Figure 7). HSP-90 in the parafollicular cell is sensitive to the nature and intensity of radiation stimulus, which can modify cellular function and serve as a biomarker for cellular damage.

Thyroid gland exposed to 2.45 GHz radiation in this experimental model of diathermy in rats presented the following visible morphological effects: (a) glandular hypertrophy in relation to the SAR and/or number of exposures; (b) modification of the distribution of HSP-90 associated with membranes and parafollicular cells. These effects might not be exclusively or directly produced by radiation and can be included with other indirect effects from the hypothalamus. However, further research is needed to ascertain whether the continued effect of this physical agent could provoke pathology in the thyroid gland.                             

 K, Sechman A, Nieckarz Z. Plasma thyroid hormones and corticosterone levels in blood of chicken embryos and post hatch chickens exposed during incubation to 1800 MHz electromagnetic field. Int J Occup Med Environ Health. 2014 Jan 31. [Epub ahead of print]


INTRODUCTION: This study attempted to determine the effect of a 1800 MHz electromagnetic field (EMF) (only carrier frequency) on thyroxine (T4), triiodothyronine (T3) and corticosterone (CORT) concentrations in the blood plasma of chick embryos, and to investigate the effect of electromagnetic field (EMF) exposure during embryogenesis on the level of these hormones in birds that are ready for slaughter.

MATERIAL AND METHODS:  Throughout the incubation period, embryos from the experimental group were exposed to a 1800 MHz EMF with power density of 0.1 W/m2, 10 times during 24 h for 4 min. Blood samples were collected to determine T4, T3 and CORT concentrations on the 12th (E12) and 18th (E18) day of incubation, from newly hatched chicks (D1) and from birds ready for slaughter (D42).

RESULTS:  The experiment showed that T4 and T3 concentrations decreased markedly and CORT levels increased in the embryos and in the newly hatched chicks exposed to EMF during embryogenesis. However, no changes were found in the level of the analyzed hormones in the birds ready for slaughter. Differences in T4 and T3 plasma concentrations between the EMF-exposed group and the embryos incubated without additional EMF were the highest in the newly hatched chicks, which may be indicative of the cumulative effect of electromagnetic field on the hypothalamo-pituitary-thyroid axis (HPT).

DISCUSSION:  The obtained results suggest that additional 1800 MHz radio frequency electromagnetic field inhibits function of HPT axis, however, it stimulates hypothalamo-pituitary-adrenal axis by inducing adrenal steroidogenic cells to synthesize corticosterone. Further investigations are needed to elucidate the mechanisms by which radio EMFs affect HPT and HPA axis function in the chicken embryos.


Jin YB, Choi HD, Kim BC, Pack JK, Kim N, Lee YS.Effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic fields on serum hormone levels in rats. J Radiat Res. 2013 May;54(3):430-7. doi: 10.1093/jrr/rrs120. Epub 2012 Dec 13.


Despite more than a decade of research on the endocrine system, there have been no published studies about the effects of concurrent exposure of radiofrequency electromagnetic fields (RF-EMF) on this system. The present study investigated the several parameters of the endocrine system including melatonin, thyroid stimulating hormone, stress hormone and sex hormone after code division multiple access (CDMA, 849 MHz) and wideband code division multiple access (WCDMA, 1.95 GHz) signals for simultaneous exposure in rats. Sprague-Dawley rats were exposed to RF-EMF signals for 45 min/day, 5 days/week for up to 8 weeks. The whole-body average specific absorption rate (SAR) of CDMA or WCDMA was 2.0 W/kg (total 4.0 W/kg). At 4 and 8 weeks after the experiment began, each experimental group's 40 rats (male 20, female 20) were autopsied. Exposure for 8 weeks to simultaneous CDMA and WCDMA RF did not affect serum levels in rats of melatonin, thyroid stimulating hormone (TSH), triiodothyronine (T3) and thyroxin (T4), adrenocorticotropic hormone (ACTH) and sex hormones (testosterone and estrogen) as assessed by the ELISA method.


Dimida A, Ferrarini E, Agretti P, De Marco G, Grasso L, Martinelli M, Longo I, Giulietti D, Ricci A, Galimberti M, Siervo B, Licitra G, Francia F, Pinchera A, Vitti P, Tonacchera M. Electric and magnetic fields do not modify the biochemical properties of FRTL-5 cells. J Endocrinol Invest. 2011 Mar;34(3):185-9. doi: 10.3275/7107. Epub 2010 Jun 11.


BACKGROUND: Electric and magnetic fields (EMF) might be involved in human disease and numerous research and scientific reviews have been conducted to address this question. In particular thyroid structural and functional alterations caused by various forms of non-ionizing radiation have been described.

AIM: The aim of this study was to analyze the possible effects of EMF on thyroid, in particular we analyzed the effects caused by a GSM (Global System for Mobile Communications) signal (900 MHz) on cultured thyroid cells (FRTL- 5).

MATERIAL AND METHODS:  The experimental setup was designed in order to expose samples to a radiofrequency wave in well-controlled conditions. We used the FRTL-5 cell line, an epithelial monoclonal continuous cell line derived from Fisher rat thyroid tissue growing as monolayer, expressing the TSH receptor and the sodium-iodide symporter (NIS). FRTL-5 were subsequently irradiate for 24, 48, and 96 h with EMF (800-900 MHz, power-frequency of mobile communication systems) and iodide uptake and cAMP production were measured.

RESULTS:  The irradiation of cells with EMF at 900 Mhz for 24, 48, and 96 h did not influence the level of cAMP production and was not able to modify iodide accumulation in FRTL- 5 cells with respect to basal conditions.

CONCLUSIONS: In conclusion, EMF do not seem to be able to interfere with the biochemical properties of FRTL-5 cells in vitro.


Esmekaya MA, Seyhan N, Ömeroglu S. Pulse modulated 900 MHz radiation induces hypothyroidism and apoptosis in thyroid cells: a light, electron microscopy and immunohistochemical study. Int J Radiat Biol. 2010 Dec;86(12):1106-16. Epub 2010 Sep 1.


PURPOSE: In the present study we investigated the possible histopathological effects of pulse modulated Radiofrequency (RF) fields on the thyroid gland using light microscopy, electron microscopy and immunohistochemical methods.

MATERIALS AND METHODS: Two months old male Wistar rats were exposed to a 900 MHz pulse-modulated RF radiation at a specific absorption rate (SAR) of 1.35 Watt/kg for 20 min/day for three weeks. The RF signals were pulse modulated by rectangular pulses with a repetition frequency of 217 Hz and a duty cycle of 1:8 (pulse width 0.576 ms). To assess thyroid endocrine disruption and estimate the degree of the pathology of the gland, we analysed structural alterations in follicular and colloidal diameters and areas, colloid content of the follicles, and height of the follicular epithelium. Apoptosis was confirmed by Transmission Electron Microscopy and assessing the activites of an initiator (caspase-9) and an effector (caspase-3) caspases that are important markers of cells undergoing apoptosis.

RESULTS: Morphological analyses revealed hypothyrophy of the gland in the 900 MHz RF exposure group. The results indicated that thyroid hormone secretion was inhibited by the RF radiation. In addition, we also observed formation of apoptotic bodies and increased caspase-3 and caspase-9 activities in thyroid cells of the rats that were exposed to modulated RF fields.

CONCLUSION: The overall findings indicated that whole body exposure to pulse-modulated RF radiation that is similar to that emitted by global system for mobile communications (GSM) mobile phones can cause pathological changes in the thyroid gland by altering the gland structure and enhancing caspase-dependent pathways of apoptosis.


Milham S. Most cancer in firefighters is due to radio-frequency radiation exposure not inhaled carcinogens. Med Hypotheses. 2009 Nov;73(5):788-9. doi: 10.1016/j.mehy.2009.04.020. Epub 2009 May 22.


Recent reviews and reports of cancer incidence and mortality in firefighters conclude that they are at an increased risk of a number of cancers. These include leukemia, multiple myeloma, non-Hodgkin's lymphoma, male breast cancer, malignant melanoma, and cancers of the brain, stomach, colon, rectum, prostate, urinary bladder, testes, and thyroid. Firefighters are exposed to a long list of recognized or probable carcinogens in combustion products and the presumed route of exposure to these carcinogens is by inhalation. Curiously, respiratory system cancers and diseases are usually not increased in firefighters as they are in workers exposed to known inhaled carcinogens. The list of cancers with increased risk in firefighters strongly overlaps the list of cancers at increased risk in workers exposed to electromagnetic fields (EMF) and radiofrequency radiation (RFR). Firefighters have increased exposure to RFR in the course of their work, from the mobile two-way radio communications devices which they routinely use while fighting fires, and at times from firehouse and fire vehicle radio transmitters. I suggest that some of the increased cancer risk in firefighters is caused by RFR exposure, and is therefore preventable. The precautionary principle should be applied to reduce the risk of cancer in firefighters, and workman's compensation rules will necessarily need to be modified.


Mortavazi S, Habib A, Ganj-Karami A, Samimi-Doost R, Pour-Abedi A, Babaie A. Alterations in TSH and Thyroid Hormones following Mobile Phone Use. Oman Med J. 2009 Oct;24(4):274-8. doi: 10.5001/omj.2009.56.


OBJECTIVES: In recent years, the widespread use of mobile phones has lead to a public debate about possible detrimental effects on human health. In spite of years of research, there is still a great controversy regarding the possibility of induction of any significant physiological effects in humans by microwave radiations emitted by mobile phones. This study aims to investigate the effects of electromagnetic fields induced by the Global System for Mobile communications (GSM) mobile phones on the Thyroid Stimulating Hormone (TSH) and thyroid hormones in humans.

METHODS: 77 healthy university students participated in this study. The levels of T3, T4 and TSH were measured by using appropriate enzyme-linked immunosorbent assay (ELISA) kits (Human, Germany).

RESULTS: The average levels of T3, T4 and TSH in students who moderately used mobile phones were 1.25±0.27 ng/ml, 7.76±1.73 µg/dl and 4.25±2.12 µu/l respectively. The levels in the students who severely used mobile phones were 1.18±0.30, 7.75±1.14 and 3.75±2.05 respectively. In non-users, the levels were 1.15±0.27, 8.42±2.72 and 2.70±1.75, respectively. The difference among the levels of TSH in these 3 groups was statistically significant (P<0.05).

CONCLUSION: As far as the study is concerned, this is the first human study to assess the associations between mobile phone use and alterations in the levels of TSH and thyroid hormones. Based on the findings, a higher than normal TSH level, low mean T4 and normal T3 concentrations in mobile users were observed. It seems that minor degrees of thyroid dysfunction with a compensatory rise in TSH may occur following excessive use of mobile phones. It may be concluded that possible deleterious effects of mobile microwaves on hypothalamic-pituitary-thyroid axis affects the levels of these hormones.


Djeridane Y, Touitou Y, de Seze R. Influence of electromagnetic fields emitted by GSM-900 cellular telephones on the circadian patterns of gonadal, adrenal and pituitary hormones in men. Radiat Res. 2008 Mar;169(3):337-43.


The potential health risks of radiofrequency electromagnetic fields (RF EMFs) emitted by mobile phones are currently of considerable public interest. The present study investigated the effect of exposure to 900 MHz GSM radiofrequency radiation on steroid (cortisol and testosterone) and pituitary (thyroid-stimulating hormone, growth hormone, prolactin and adrenocorticotropin) hormone levels in 20 healthy male volunteers. Each subject was exposed to RF EMFs through the use of a cellular phone for 2 h/day, 5 days/ week, for 4 weeks. Blood samples were collected hourly during the night and every 3 h during the day. Four sampling sessions were performed at 15-day intervals: before the beginning of the exposure period, at the middle and the end of the exposure period, and 15 days later. Parameters evaluated included the maximum serum concentration, the time of this maximum, and the area under the curve for hormone circadian patterns. Each individual's pre-exposure hormone concentration was used as his control. All hormone concentrations remained within normal physiological ranges. The circadian profiles of prolactin, thyroid-stimulating hormone, adrenocorticotropin and testosterone were not disrupted by RF EMFs emitted by mobile phones. For growth hormone and cortisol, there were significant decreases of about 28% and 12%, respectively, in the maximum levels when comparing the 2-week (for growth hormone and cortisol) and 4-week (for growth hormone) exposure periods to the pre-exposure period, but no difference persisted in the postexposure period. Our data show that the 900 MHz EMF exposure, at least under our experimental conditions, does not appear to affect endocrine functions in men.


Koyu A, Cesur G, Ozguner F, Akdogan M, Mollaoglu H, Ozen S. Effects of 900 MHz electromagnetic field on TSH and thyroid hormones in rats. Toxicol Lett. 2005 Jul 4;157(3):257-62. Epub 2005 Apr 11.


In this study, the effects of exposure to a 900 megahertz (MHz) electromagnetic field (EMF) on serum thyroid stimulating hormone (TSH) and triiodothronine-thyroxin (T3-T4) hormones levels of adult male Sprague-Dawley rats were studied. Thirty rats were used in three independent groups, 10 of which were control (without stress and EMF), 10 of which were exposed to 900 MHz EMF and 10 of which were sham-exposed. The exposures were performed 30 min/day, for 5 days/week for 4 weeks to 900 MHz EMF. Sham-exposed animals were kept under the same environmental conditions as the study groups except with no EMF exposure. The concentration of TSH and T3-T4 hormones in the rat serum was measured by using an immunoradiometric assay (IRMA) method for TSH and a radio-immunoassay (RIA) method for T3 and T4 hormones. TSH values and T3-T4 at the 900 MHz EMF group were significantly lower than the sham-exposed group (p<0.01). There were no statistically significant differences in serum TSH values and T3-T4 hormone concentrations between the control and the sham-exposed group (p>0.05). These results indicate that 900 MHz EMF emitted by cellular telephones decrease serum TSH and T3-T4 levels.


Wakeford R. The cancer epidemiology of radiation. Oncogene. 2004 Aug 23;23(38):6404-28.


Ionizing radiation has been the subject of intense epidemiological investigation. Studies have demonstrated that exposure to moderate-to-high levels can cause most forms of cancer, leukaemia and cancers of the breast, lung and thyroid being particularly sensitive to induction by radiation, especially at young ages at exposure. Predominant among these studies is the Life Span Study of the cohort of survivors of the atomic bombings of Japan in 1945, but substantial evidence is derived from groups exposed for medical reasons, occupationally or environmentally. Notable among these other groups are underground hard rock miners who inhaled radioactive radon gas and its decay products, large numbers of patients irradiated therapeutically and workers who received high doses in the nuclear weapons programme of the former USSR. The degree of carcinogenic risk arising from low levels of exposure is more contentious, but the available evidence points to an increased risk that is approximately proportional to the dose received. Epidemiological investigations of nonionizing radiation have established ultraviolet radiation as a cause of skin cancer. However, the evidence for a carcinogenic effect of other forms of nonionizing radiation, such as those associated with mobile telephones or electricity transmission lines, is not convincing, although the possibility of a link between childhood leukaemia and extremely low-frequency electromagnetic fields cannot be dismissed entirely.


Bergamaschi A, Magrini A, Ales G, Coppeta L, Somma G. Are thyroid dysfunctions related to stress or microwave exposure (900 MHz)? Int J Immunopathol Pharmacol. 2004 May-Aug;17(2 Suppl):31-6.


In the last decade, numerous scientific evidence suggested possible adverse health effects from exposure to electromagnetic fields (EMF'S) and the use of mobile phones. According to some studies EMF induced changes of trans-membrane Ca++ flux may lead to altered metabolism and/or secretion of neurohormones including TSH, ACTH, GH, prolactin and melatonin. The aim of this research was to analyse the effects of mobile phone use on thyroid function and to evaluate the possible role of occupational stress. 2598 employees (1355 men and 1243 women) with different duties (vendors, operators and network technicians) were included in the study. Exposure to EMF'S, generated by mobile phones, was assessed both by submitting a questionnaire directly to the employees and acquiring data regarding conversation times. The workers were divided into three groups on the basis of their personal mobile phone use. Moreover, a group of 160 workers with TSH values below 0.4 UI/l was characterized. No statistically significant difference regarding TSH values below 0.4 UI/l was observed among workers with different duties but there was a greater prevalence of subjects with low SH values among 192 employees with more than 33 hrs./month conversation time; this difference was statistically significant (p<0.05). On the basis of our data, it is not possible to establish whether this result is determined by exposure to EMF'S from mobile phones of by the stress of using these instruments.


Black DR, Heynick LN. Radiofrequency (RF) effects on blood cells, cardiac, endocrine, and immunological functions.Bioelectromagnetics. 2003;Suppl 6:S187-95.


Effects of radiofrequency electromagnetic fields (RFEMF) on the pituitary adrenocortical (ACTH), growth (GH), and thyroid (TSH) hormones have been extensively studied, and there is coherent research on reproductive hormones (FSH and LH). Those effects which have been identified are clearly caused by heating. The exposure thresholds for these effects in living mammals, including primates, have been established. There is limited evidence that indicates no interaction between RFEMF and the pineal gland or an effect on prolactin from the pituitary gland. Studies of RFEMF exposed blood cells have shown that changes or damage do not occur unless the cells are heated. White cells (leukocytes) are much more sensitive than red cells (erythrocytes) but white cell effects remain consistent with normal physiological responses to systemic temperature fluctuation. Lifetime studies of RFEMF exposed animals show no cumulative adverse effects in their endocrine, hematological, or immune systems. Cardiovascular tissue is not directly affected adversely in the absence of significant RFEMF heating or electric currents. The regulation of blood pressure is not influenced by ultra high frequency (UHF) RFEMF at levels commonly encountered in the use of mobile communication devices.