Monday, November 4, 2019

International Agency for Research on Cancer (WHO) Position on Radiofrequency Radiation



In May, 2011, the International Agency for Research on Cancer (IARC), the specialized cancer agency of the World Health Organization, classified radio frequency radiation (RFR) as "possibly carcinogenic to humans (Group 2B), based on an increased risk for glioma, a malignant type of brain cancer, associated with wireless phone use." "The conclusion means that there could be some risk, and therefore we need to keep a close watch for a link between cell phones and cancer risk."

A working group of 31 scientists from 14 nations made this determination after reviewing hundreds of studies that examined the potential carcinogenic hazard of long-term exposure to RFR. They examined exposure data, studies of cancer in humans, studies of cancer in experimental animals, and mechanistic and other relevant data. 

" 'Given the potential consequences for public health of this classification and findings,' said IARC Director Christopher Wild, 'it is important that additional research be conducted into the long‐term, heavy use of mobile phones. Pending the availability of such information, it is important to take pragmatic measures to reduce exposure such as hands‐free devices or texting.' "


IARC (2011). "IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans." Press Release No. 208. IARC, WHO. https://www.iarc.fr/wp-content/uploads/2018/07/pr208_E.pdf

IARC (2013e). Non-ionizing radiation, Part 2: Radiofrequency electromagnetic fields. IARC Monogr Eval Carcinog Risks Hum. 102:1–460. Available from: http://publications.iarc.fr/126 PMID:24772662

For a summary of this 2013 monograph see:

--o--


In March, 2019, the Advisory Group for the IARC recommended that the IARC review the research on RFR to determine if it is a carcinogenic hazard (i.e. Group 2A or Group 1). The advisory group recommended that this review be conducted within the next five years and called it a "high priority."

Following are excerpts from the IARC report:

International Agency for Research on Cancer (IARC). Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024. IARC, World Health Organization, 2019. https://monographs.iarc.fr/wp-content/uploads/2019/10/IARCMonographs-AGReport-Priorities_2020-2024.pdf.


Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024



Introduction (pp. 1-2)

"An IARC Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 met in Lyon, France, on 25–27 March 2019. IARC periodically convenes such Advisory Groups to ensure that the Monographs evaluations reflect the current state of scientific evidence relevant to carcinogenicity.

Before the meeting, IARC solicited nominations of agents via the website of the IARC Monographs programme and the IARC RSS news feed, and through direct contact with the IARC Governing Council and members of the IARC Scientific Council, WHO headquarters and regional offices, and previous participants in the Monographs programme. Nominations were also developed by IARC personnel, including the recommended priorities remaining from a similar Advisory Group meeting convened in 2014 (Straif et al., 2014), and the priorities nominated by the Advisory Group.

The list of Advisory Group members and all other meeting participants is provided in Annex 1 (see https://monographs.iarc.fr/wp-content/uploads/2019/02/AGP-ListofParticipants.pdf ) ...."

"Priority was assigned on the basis of (i) evidence of human exposure and (ii) the extent of the available evidence for evaluating carcinogenicity (i.e. the availability of relevant evidence on cancer in humans, cancer in experimental animals, and mechanisms of carcinogenesis to support a new or updated evaluation according to the Preamble to the IARC Monographs). Any of the three evidence streams could alone support prioritization of agents with no previous evaluation. For previously evaluated agents, the Advisory Group considered the basis of the previous classification as well as the potential impact of the newly available evidence during integration across streams (see Table 4 in the Preamble to the IARC Monographs). Agents without evidence of human exposure or evidence for evaluating carcinogenicity were not recommended for further consideration."

....

"Non-ionizing radiation (radiofrequency) and extremely low-frequency magnetic fields (pp. 148-149)

Radiofrequency electromagnetic fields (RF-EMF) were evaluated by the IARC Monographs as possibly carcinogenic to humans (Group 2B) (IARC, 2013e), on the basis of limited evidence of an increased risk of glioma. Extremely low-frequency magnetic fields (ELF-MF) were evaluated as possibly carcinogenic to humans (Group 2B) (IARC, 2002), on the basis of limited evidence of an increased risk of childhood leukaemia.

Exposure Data

Human exposures to RF-EMF can occur from use of personal devices (e.g. cell phones, cordless phones, and Bluetooth) and from environmental sources such as cell phone base stations, broadcast antennas, and medical applications. More than 5 billion people now have access to cell phone devices, and the technology is constantly evolving. Use has also expanded rapidly in low- and middle-income countries, where more than 75% of adults now report owning a cell phone; in high-income countries, the proportion is 96% (Pew Research Center, 2018).

Cancer in Humans

Since the previous IARC Monographs evaluation, several new epidemiological studies have been published on the association between RF-EMF and cancer, although the evidence remains mixed. In the Million Women Study cohort, there was no evidence of increased risk of glioma or meningioma, even among long-term users. There was an increased risk of acoustic neuromas with long-term use and a significant dose–response relationship (Benson et al., 2013). Updated follow-up in the Danish nationwide subscribers study did not find increased risks of glioma, meningioma, or vestibular schwannoma, even among those with subscriptions of 10 years or longer (Frei et al., 2011; Schüz et al., 2011). New reports from case–control studies that assessed long-term use also found mixed results; for example, increased risks of glioma and acoustic neuroma were reported by Hardell & Carlberg (2015) and Hardell et al. (2013), but no evidence of increased risks for these tumours were reported by Yoon et al. (2015) and Pettersson et al. (2014). Röösli et al. (2019) recently reviewed these new data. Several large-scale studies are still in progress and should report results within the next few years. Mobi-Kids is a multicentre case–control study of brain tumours in those aged 10–24 years. Cohort Study of Mobile Phone Use and Health (COSMOS) is a new European cohort of adult cell phone users. There will also be updated results from the Million Women Study.

Cancer in Experimental Animals

New data in experimental animals for exposure to RF-EMF have been published since the previous IARC Monographs evaluation. The large study by the United States National Toxicology Program found an increased risk of malignant schwannomas of the heart in male rats with high exposure to radiofrequency radiation at frequencies used by cell phones, as well as possible increased risks of certain types of tumours in the brain and adrenal glands, but no increased risks in mice or female rats (NTP, 2018a, b). Another study in experimental animals also found an increase in schwannomas of the heart in highly exposed male rats and a possible increase in gliomas in female rats (Falcioni et al., 2018).

 Mechanistic Evidence

The previous IARC evaluation concluded that there was weak evidence that radiofrequency radiation was genotoxic but that there was no evidence for mutagenicity (IARC, 2013e). Although there have been many new publications from a wide variety of experiments, uncertainty remains about the mechanisms, and there are few systematic reviews of the new data (Kocaman et al., 2018).

Although a future evaluation could be broadened to consider exposure to all non-ionizing radiation (including ELF-MF), ELF-MF were evaluated by IARC as possibly carcinogenic to humans (Group 2B), and the Advisory Group did not recommend an update, because of a lack of new informative epidemiological findings, no toxicological evidence, and little supporting mechanistic evidence.

References

The following key references were also identified: Coureau et al. (2014); Carlberg & Hardell (2015); Pedersen et al. (2017).

Recommendation for non-ionizing radiation (radiofrequency): High priority (and ready for evaluation within 5 years)

Recommendation for extremely low-frequency magnetic fields: No evaluation "


References cited in this section of the report:

Benson VS, Pirie K, Schüz J, Reeves GK, Beral V, Green J; Million Women Study Collaborators (2013). Mobile phone use and risk of brain neoplasms and other cancers: prospective study. Int J Epidemiol. 42(3):792–802. https://doi.org/10.1093/ije/dyt072 PMID:23657200

Carlberg M, Hardell L (2015). Pooled analysis of Swedish case-control studies during 1997-2003 and 2007-2009 on meningioma risk associated with the use of mobile and cordless phones. Oncol Rep. 33(6):3093–8. https://doi.org/10.3892/or.2015.3930 PMID:25963528

Coureau G, Bouvier G, Lebailly P, Fabbro-Peray P, Gruber A, Leffondre K, et al. (2014). Mobile phone use and brain tumours in the CERENAT case-control study. Occup Environ Med. 71(7):514–22. https://doi.org/10.1136/oemed-2013-101754 PMID:24816517

Falcioni L, Bua L, Tibaldi E, Lauriola M, De Angelis L, Gnudi F, et al. (2018). Report of final results regarding brain and heart tumors in Sprague-Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental

Frei P, Poulsen AH, Johansen C, Olsen JH, Steding-JessenM, Schüz J (2011). Use of mobile phones and risk of brain tumours: update of Danish cohort study. BMJ. 343:d6387. https://doi.org/10.1136/bmj.d6387 PMID:22016439

Hardell L, Carlberg M (2015). Mobile phone and cordless phone use and the risk for glioma - analysis of pooled case-control studies in Sweden, 1997-2003 and 2007-2009. Pathophysiology. 22(1):1–13. https://doi.org/10.1016/j.pathophys.2014.10.001 PMID:25466607

IARC (2013e). Non-ionizing radiation, Part 2: Radiofrequency electromagnetic fields. IARC Monogr Eval Carcinog Risks Hum. 102:1–460. Available from: http://publications.iarc.fr/126 PMID:24772662

Kocaman A, Altun G, Kaplan AA, Deniz ÖG, Yurt KK, Kaplan S (2018). Genotoxic and carcinogenic effects of non-ionizing electromagnetic fields. Environ Res. 163:71–9. https://doi.org/10.1016/j.envres.2018.01.034 PMID:29427953

NTP (2018a). Toxicology and carcinogenesis studies in B6C3F1/N mice exposed to whole-body radio frequency radiation at a frequency (1900 MHz) and modulations (GSM and CDMA) used by cell phones. Natl Toxicol Program Tech Rep Ser. 596. Research Triangle Park (NC), USA: US Department of Health and Human Services, Public Health Service. Available from: https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr596_508.pdf.

NTP (2018b). Toxicology and carcinogenesis studies in Hsd:Sprague Dawley SD rats exposed to whole-body radiofrequency radiation at a frequency (900MHz) and modulations (GSM and CDMA) used by cellphones. Natl Toxicol Program Tech Rep Ser. 595. Research Triangle Park (NC), USA: US Department of Health and Human Services, Public Health Service. Available from: https://www.niehs.nih.gov/ntp-temp/tr595_508.pdf.

Pedersen C, Poulsen AH, Rod NH, Frei P, Hansen J, Grell K, et al. (2017). Occupational exposure to extremely low-frequency magnetic fields and risk for central nervous system disease: an update of a Danish cohort study among utility workers. Int Arch Occup Environ Health. 90(7):619–28. https://doi.org/10.1007/s00420-017-1224-0 PMID:28429106

Pettersson D, Mathiesen T, Prochazka M, Bergenheim T, Florentzson R, Harder H, et al. (2014). Long-term mobile phone use and acoustic neuroma risk. Epidemiology. 25(2):233–41. https://doi.org/10.1097/EDE.0000000000000058 PMID:24434752

Pew Research Center (2018). Social media use continues to rise in developing countries, but plateaus across developed ones. Available from: https://www.pewglobal.org/2018/06/19/social-media-use-continues-to-rise-in-developing-countries-but-plateaus-across-developed-ones/

Schüz J, Steding-JessenM, Hansen S, Stangerup SE, Cayé-Thomasen P, Poulsen AH, et al. (2011). Long-term mobile phone use and the risk of vestibular schwannoma: a Danish nationwide cohort study. Am J Epidemiol. 174(4):416–22. https://doi.org/10.1093/aje/kwr112 PMID:21712479

Straif K, Loomis D, Guyton K, Grosse Y, Lauby-Secretan B, El Ghissassi F, et al. (2014). Future priorities for the IARC Monographs. Lancet Oncol. 15(7):683–4. https://doi.org/10.1016/S1470-2045(14)70168-8

Yoon S, Choi J-W, Lee E, An H, Choi HD, KimN (2015). Mobile phone use and risk of glioma: a case-control study in Korea for 2002-2007. Environ Health Toxicol. 30:e2015015. https://doi.org/10.5620/eht.e2015015 PMID:26726040

Friday, November 1, 2019

Part II: Why We Need Stronger Cell Phone Radiation Regulations--Key Research Papers Submitted to the FCC

Selected FCC Submissions re: 

"Reassessment of Federal Communications Commission Radiofrequency 

Exposure Limits and Policies" (Proceeding Number 13-84)


Part II: Key Research Papers Submitted to the FCC

Last revision: November 1, 2019
The FCC received more than 1,200 submissions regarding its cell phone radiation regulations. These documents reveal what we know about wireless radiation health effects, and why we need to strengthen regulations and provide precautionary warnings to the public.
In response to the Federal Communications Commission's (FCC) request for input regarding its radio frequency radiation regulations adopted in 1996, individuals and organizations submitted thousands of documents, testimonials, research papers and scientific publications that are now available to the media and to the public. 
These documents reveal what we know about wireless radiation health effects, and why we need to strengthen regulations and provide precautionary warnings to the public.

Although fifteen countries have issued precautionary health warnings about cell phone radiation and recommendations on how to reduce risks, the wireless industry in the U.S. has opposed precautionary warnings and wants to weaken our radiation standards instead of strengthen them.
In all, more than 1,200 submissions were made to the FCC between June 24, 2012 and November 1, 2019. Many submissions include multiple documents. To access these papers go to the FCC's web site for Proceeding Number 13-84.

Part II which appears below contains a list of key research papers and monographs submitted to the FCC and links to these documents which  enable people to download the papers.
See Part I for key submissions to the FCC regarding cell phone radiation and its health effects, and cell phone testing procedures and regulatory standards.
See Part III for links to petitions signed by EMF scientists calling for stronger regulations of electromagnetic fields (EMF) including radio frequency fields. The International EMF Scientist Appeal was signed by more than 240 scientists who have published over 2,000 papers and letters in professional journals on EMF and biology or health.
 Published Research Papers

Adams et al. Effect of mobile telephones on sperm quality: A systematic review and meta-analysis. Environment Int. 2014. 70(2014): 106-112.  http://apps.fcc.gov/ecfs/document/view?id=60001040814

Aldad TS, Gan G, Gao XB, Taylor HS. Fetal radiofrequency radiation exposure from 800-1900 mhz-rated cellular telephones affects neurodevelopment and behavior in mice. Sci Rep. 2012;2:312. doi: 10.1038/srep00312. http://apps.fcc.gov/ecfs/document/view?id=7022311532

Altun et al. Effects of mobile phone exposure on metabolomics in the male and female reproductive systems. Environ Res. 2018 Nov;167:700-707.
https://ecfsapi.fcc.gov/file/1091314126731/Effects%20of%20mobile%20phone%20exposure%20on%20metabolomics%20in%20the%20male%20and%20female%20T%20reproductive%20systems.pdf

Balmori A. Electromagnetic pollution from phone masts. Effects on wildlife. Pathophysiology. 2009 Aug;16(2-3):191-9. doi: 10.1016/j.pathophys.2009.01.007.
http://apps.fcc.gov/ecfs/document/view?id=7520940774

Balmori A. Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation. Science of Total Environment. 518-519:58-60. 2015.
https://ecfsapi.fcc.gov/file/109303096909269/Balmori%202015.pdf 


Barnes F, Greenebaum B. Role of radical pairs and feedback in weak radio frequency field effects on biological systems. Environ Res. 2018 May;163:165-170.
https://ecfsapi.fcc.gov/file/10913119016386/Role%20of%20radical%20pairs%20and%20feedback%20in%20weak%20radio%20frequency%20field%20effects%20on%20biological%20systems.pdf

Belpomme et al. Thermal and non-thermal health effects of low intensity non-ionizingradiation: An international perspective. Envir Pollution. 242:643-658. 2018. https://ecfsapi.fcc.gov/file/12103008105187/nonionizing%20radiation%20international%20perspective%20Belpomme%20Hardell%20Carpenter%202018.pdf

Belyaev et al. Nonthermal effects of extremely high-frequency microwaves on chromatin conformation in cells in vitro—Dependence on physical, Physiological, and genetic factors. IEEE Transactions on Microwave Theory and Techniques. 48(11):2172-2179. 2000. 
https://ecfsapi.fcc.gov/file/10711815002508/2000%20Belyaev%20IEEE_MTT_%20MMW%20Review.pdf

Betzalel et al. The human skin as a sub-THz receiver–Does 5G pose a danger to it or not? Envir Research. 163:208-216. 2018. https://ecfsapi.fcc.gov/file/1210030663890/The%20human%20skin%20as%20a%20sub-THz%20receiver%20%E2%80%93%20Does%205G%20pose%20a%20danger%20to%20it%20or%20not%20(1).pdf

Buchner K, Eger H. Changes of Clinically Important Neurotransmitters under the Influence of Modulated RF Fields—A long-term study under real-life conditions. Umwelt-Medizin-Gesellschaft 24(1):44-57. 2011. http://apps.fcc.gov/ecfs/document/view?id=7520940778

Blackman CF. Treating cancer with amplitude-modulated electromagnetic fields: a potential paradigm shift, again? Br J Cancer. 2012 Jan 17;106(2):241-2. doi: 10.1038/bjc.2011.576. http://apps.fcc.gov/ecfs/document/view?id=7520940777

Chou CK, Guy AW, Kunz LL, Johnson RB, Crowley JJ, Krupp JH. Long-term, low-level microwave irradiation of rats. Bioelectromagnetics. 1992;13(6):469-96.
http://apps.fcc.gov/ecfs/document/view?id=60002060833

Costa et al. Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulated electromagnetic fields. Br J Cancer. 2011 Aug 23;105(5):640-8.doi:10.1038/bjc.2011.292.

Cucurachi et al. A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ Int. 2013 Jan;51:116-40. doi: 10.1016/j.envint.2012.10.009.

Davis et al. Swedish review strengthens grounds for concluding that radiation from cellular and cordless phones is a probable human carcinogen. Pathophysiology. 2013 Apr;20(2):123-9. doi: 10.1016/j.pathophys.2013.03.001.

Everaert J, Bauwens D. A possible effect of electromagnetic radiation from mobile phone base stations on the number of breeding house sparrows (Passer domesticus). Electromagn Biol Med. 2007;26(1):63-72. http://apps.fcc.gov/ecfs/document/view?id=7520940767

Falcioni et al. Report of final results regarding brain and heart tumors in Sprague-Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emission. Environ Res. 2018 Aug;165:496-503. https://ecfsapi.fcc.gov/file/10913119016386/Report%20of%20final%20results%20regarding%20brain%20and%20heart%20tumors%20in%20Sprague-Dawley%20rats%20exposed%20from%20prenatal%20life%20until%20natural%20death%20to%20mobile%20phone%20radiofrequency%20field%20representative%20of%20a%201.8%20GHz%20GSM%20base%20station%20environmental%20emission.pdf

Fernández et al. Absorption of wireless radiation in the child versus adult brain and eye from cell phone conversation or virtual reality. Environ Res. 2018 Nov;167:694-699. https://ecfsapi.fcc.gov/file/10913927726988/Absorption%20of%20wireless%20radiation%20in%20the%20child%20versus%20adult%20brain%20and%20eye%20from%20T%20cell%20phone%20conversation%20or%20virtual%20reality.pdf

Foerster et al. A prospective cohort study of adolescents' memory performance and individual brain dose of microwave radiation from wireless communication. Envir Health Perspectives. 126(7). July 2018. 
https://ecfsapi.fcc.gov/file/10429016089243/ProspectiveCohortStudyofAdolescents%E2%80%99%20Memory%20PerformanceandIndividual%20Brain%20DoseofMicrowaveRadiation.pdf

Fragopoulou et al. Scientific panel on electromagnetic field health risks: consensus points, recommendations, and rationales. Rev Environ Health. 2010 Oct-Dec;25(4):307-17.

Gandhi, OP. Yes the Children Are More Exposed to Radiofrequency Energy From Mobile Telephones Than Adults. IEEE Spectrum. 3:985-988. July 10, 2015.
http://apps.fcc.gov/ecfs/document/view?id=60001122233

Gandhi, OP, Kang G. Inaccuracies of a plastic pinna SAM for SAR testing of cellular telephones against IEEE and ICNIRP safety guidelines. IEEE Transactions on Microwave Theory and Techniques. 52(8):2004-2012. Aug 2004; DOI: 10.1109/TMTT.2004.832689.
Gandhi et al. Exposure limits: the underestimation of absorbed cell phone radiation, especially in children. Electromagn Biol Med. 2012 Mar;31(1):34-51. doi: 10.3109/15368378.2011.622827.

Giuliani L, Soffritti M. (Eds.) Non-thermal Effects and Mechanisms of Interaction between Electromagnetic Fields and Living Matter. ICEMS Monograph. European J Oncology. Vol. 5. 2010.
Güler et al. The effect of radiofrequency radiation on DNA and lipid damage in female and male infant rabbits. Int J Radiat Biol. 2012 Apr;88(4):367-73. doi: 10.3109/09553002.2012.646349.

Haggerty K. Adverse Influence of Radio Frequency Background on Trembling Aspen Seedlings: Preliminary Observations.International Journal of Forestry Research, vol. 2010, Article ID 836278, 7 pages, 2010. doi:10.1155/2010/836278. http://apps.fcc.gov/ecfs/document/view?id=7520940764

Hagström M, Auranen J, Ekman R. Electromagnetic hypersensitive Finns: Symptoms, perceived sources and treatments, a questionnaire study. Pathophysiology. 2013 Apr;20(2):117-22. doi: 10.1016/j.pathophys.2013.02.001. http://apps.fcc.gov/ecfs/document/view?id=7520941823

Hardell L. World Health Organization, radiofrequency radiation and health - a hard nut to crack (Review). Int J Oncology. 51:405-413. 2017.

Havas M. Radiation from wireless technology affects the blood, the heart, and the autonomic nervous system. Rev Environ Health. 2013;28(2-3):75-84. doi: 10.1515/reveh-2013-0004. http://apps.fcc.gov/ecfs/document/view?id=7520958029

Herbert MR, Sage C. Autism and EMF? Plausibility of a pathophysiological link - Part I. Pathophysiology. 2013 Jun;20(3):191-209. doi: 10.1016/j.pathophys.2013.08.001.

Herbert MR, Sage C. Autism and EMF? Plausibility of a pathophysiological link part II. Pathophysiology. 2013 Jun;20(3):211-34. doi: 10.1016/j.pathophys.2013.08.002.

Houston et al. The effects of radiofrequency electromagnetic radiation on sperm function. Reproduction. 2016.
https://ecfsapi.fcc.gov/file/1093016723166/RF%20Impact%20on%20Spermatozoa.pdf


Kane RC. A possible association between fetal/neonatal exposure to radiofrequency electromagnetic radiation and the increased incidence of autism spectrum disorders (ASD). Med Hypotheses. 2004;62(2):195-7.

Kesari KK, Kumar S, Behari J. Pathophysiology of microwave radiation: effect on rat brain.
Appl Biochem Biotechnol. 2012 Jan;166(2):379-88. doi: 10.1007/s12010-011-9433-6.
http://apps.fcc.gov/ecfs/document/view?id=7520939750

Kocaman et al. Genotoxic and carcinogenic effects of non-ionizing electromagnetic fields. Environ Res. 2018 May;163:71-79.  https://ecfsapi.fcc.gov/file/1091314126731/Genotoxic%20and%20carcinogenic%20effects%20of%20non-ionizing%20electromagnetic%20fields.pdf

Kundi M, Hunter H-P. Mobile phone base stations—Effects on wellbeing and health. Pathophysiology. 2009.
https://ecfsapi.fcc.gov/file/109303096909269/Kundi%20%26%20Hutter%2C%202009.pdf


Lai H. Exposure to Static and Extremely-Low Frequency Electromagnetic Fields and Cellular Free Radicals. Electromagn Biol Med. 2019 Aug 26:1-18. https://ecfsapi.fcc.gov/file/10920151427784/Henry%20Lai%20ELF%20static%20field%20review%20paper%202019.pdf

Levis AG, Gennaro V, Garbiso S. Business bias as usual: The case of electromagnetic pollution.  In Elsner W, Frigato P, Ramazzotti P eds: “Social Costs Today. Institutional Analyses of the Present Crises”. Routledge (Taylor&Francis Group), London and New York 2012: 225-68.

Levis et al. Mobile phones and head tumours. The discrepancies in cause-effect relationships in the epidemiological studies - how do they arise? Environ Health. 2011 Jun 17;10:59. doi: 10.1186/1476-069X-10-59.

Levitt BB, Lai H. Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environ. Res. 18:369-395. 2010.

Li DK, Ferber JR, Odouli R, Quesenberry CP Jr. A prospective study of in-utero exposure to magnetic fields and the risk of childhood obesity. Sci Rep. 2012;2:540. doi: 10.1038/srep00540. http://apps.fcc.gov/ecfs/document/view?id=7022311533

Lin JC. Human exposure to RF, microwave, and millimeter-wave radiation. IEEE Microwave Magazine. 17(6):32-36. 2016.
https://ecfsapi.fcc.gov/file/1018263449175/IEEE%20MWM%20RF%20Exposure%2007464988%20James%20C%20Lin%202016.pdf

Lin, JC. The significance of primary tumors in the NTP study of chronic rat exposure to cell phone radiation. IEEE Microwave Magazine. 20(11):18-21. 2019.  
https://ecfsapi.fcc.gov/file/1018805901388/Lin%20NTP%20Primary%20Tumors%2008866792.pdf

Lissak G. Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environ Res. 2018 Jul;164:149-157. https://ecfsapi.fcc.gov/file/10913927726988/Adverse%20physiological%20and%20psychological%20effects%20of%20screen%20time%20on%20children%20and%20adolescents%3A%20Literature%20review%20and%20case%20study.pdf 

McKee L. Meeting the imperative to accelerate environmental bioelectromagnetics research. Environ Res. 2018 Jul;164:100-108. https://ecfsapi.fcc.gov/file/10913296696567/Meeting%20the%20imperative%20to%20accelerate%20environmental%20bioelectromagnetics%20research.pdf

Melnick RL. Commentary on the utility of the National Toxicology Program study on cellphone radiofrequency radiation data for assessing human health risks despite unfounded criticisms aimed at minimizing the findings of adverse health effects. Environ Research. 168:1-6. 2019. https://ecfsapi.fcc.gov/file/1001332406626/Melnick-Commentary%20on%20the%20utility%20of%20the%20National%20Toxicology%20Program%20study.pdf

Miller et al. Cancer epidemiology update, following the 2011 IARC evaluation of radiofrequency electromagnetic fields (Monograph 102). Envir Research. 2018. 
https://ecfsapi.fcc.gov/file/12103008105187/Miller%20et%20al%20(1).%20Cancer%20epidemiology%20update%20copy%202.pdf

Myung et al. Mobile phone use and risk of tumors: a meta-analysis. J Clin Oncol. 2009 Nov 20;27(33):5565-72. doi: 10.1200/JCO.2008.21.6366.

Nittby et al. Increased blood-brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology. 2009 Aug;16(2-3):103-12. doi: 10.1016/j.pathophys.2009.01.001.

Nittby et al. Review. Radiofrequency and extremely low-frequency electromagnetic field effects on the blood-brain barrier. Electromagn Biol Med. 2008;27(2):103-26. doi: 10.1080/15368370802061995.

Odaci E, Bas O, Kaplan S. Effects of prenatal exposure to a 900 MHz electromagnetic field on the dentate gyrus of rats: a stereological and histopathological study. Brain Res. 2008 Oct 31;1238:224-9. doi: 10.1016/j.brainres.2008.08.013. http://apps.fcc.gov/ecfs/document/view?id=7022311527

Pall ML. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med. 2013 Aug;17(8):958-65. doi: 10.1111/jcmm.12088.
http://apps.fcc.gov/ecfs/document/view?id=7520941801

Pall ML. Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. J Chemical Neuroanatomy. 2015.
https://ecfsapi.fcc.gov/file/1001669617135/PallNeuropsychiatric2015.pdf


Pall ML. WiFi is an important threat to human health. Environ Research. 164: 405-416. 2018. https://ecfsapi.fcc.gov/file/10429016089243/WIF%20threat%20Martin%20Pall%202018%20Environmental%20Research%20.pdf

Panagopoulos DJ. Comparing DNA damage induced by mobile telephony and other types of man-made electric fields. Mutation Research--Reviews in Mutation Research. 781:53-62. 2019. https://ecfsapi.fcc.gov/file/10429016089243/Panagopoulos-2019-Mut%20Res%20Rev%20Comparing%20DNA%20damage%20induced%20by%20mobile%20telephony%20and%20other%20types%20of%20man-made%20electromagnetic%20fields.pdf

Panagopoulos DJ, Johansson O, Carlo GL. Evaluation of specific absorption rate as a dosimetric quantity for electromagnetic fields bioeffects. PLoS One. 2013 Jun 4;8(6):e62663. doi: 10.1371/journal.pone.0062663. Print 2013. Erratum in: PLoS One.

Peleg M, Nativ O, Richter ED. Radio frequency radiation-related cancer: assessing causation in the occupational/military setting. Environ Res. 2018 May;163:123-133.


Persson BRR, Salford LG, Brun A. Blood-brain barrier permeability in rats exposed to electromagnetic fields used in wireless communication. Wireless Networks. 3:455-461.1997. http://apps.fcc.gov/ecfs/document/view?id=7520941992

Rea et al. Electromagnetic field sensitivity. Journal of Bioelectricity. 10(1&2):242-256. 1991.

Russell CL. 5 G wireless telecommunications expansion: Public health and environmental implications. Environ Research. 165:484-495. 2018. https://ecfsapi.fcc.gov/file/1001332406626/CindyRussell5%20G%20wireless%20telecommunications%20expansion.pdf

Sage C, Carpenter DO. Public health implications of wireless technologies. Pathophysiology . 16: 233–246. 2009. 
https://ecfsapi.fcc.gov/file/109303096909269/Sage%20%26%20Carpenter%2C%202009.pdf 

Sagar et al. Comparison of radiofrequency electromagnetic field exposure levels in different everyday microenvironments in an international context. Environ Int. 2018 May;114:297-306. https://ecfsapi.fcc.gov/file/10920151427784/RF%20microenvironment%206-nation%20study%20Environment%20Intl%20Sagar%20Roosli%202018.pdf

Sivani S, Sudarsanam D. Impacts of radio-frequency electromagnetic field (RF-EMF) from
cell phone towers and wireless devices on biosystem and ecosystem – a review. Biology and Medicine 4(4):202-216. 2012. http://apps.fcc.gov/ecfs/document/view?id=7520940779

Thielens et al. Exposure of Insects to Radio-Frequency Electromagnetic Fields from 2 to 120 GHz. Sci Reports. 8: 3924. 2018.  https://ecfsapi.fcc.gov/file/1210030663890/Exposure%20of%20Insects%20to%20RadioFrequency%20Electromagnetic%20Fields%20from%202%20to%20120GHz%205g%20.pdf

Tseng et al. Induction of vertebrate regeneration by a transient sodium current. J Neurosci. 2010 Sep 29;30(39):13192-200. doi: 10.1523/JNEUROSCI.3315-10.2010. http://apps.fcc.gov/ecfs/document/view?id=7520940761 

Wall et al. Real-world cell phone radiofrequency electromagnetic field exposures. Environ Res. 2019 Apr;171:581-592.
https://ecfsapi.fcc.gov/file/10913296696567/Real-world%20cell%20phone%20radiofrequency%20electromagnetic%20field%20exposures.pdf

Yahyazadeh A, Deniz ÖG, Kaplan AA. The genomic effects of cell phone exposure on the reproductive system. Environ Res. 2018 Nov;167:684-693.
https://ecfsapi.fcc.gov/file/109131837001830/The%20genomic%20effects%20of%20cell%20phone%20exposure%20on%20the%20reproductive%20system.pdf

Yakymenko et al. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagnetic Biology and Medicine. Posted online on July 7, 2015. 
http://apps.fcc.gov/ecfs/document/view?id=60001122232

Zothansiama et al. Impact of radiofrequency radiation on DNA damage and antioxidants in peripheral blood lymphocytes of humans residing in the vicinity of mobile phone base stations. Electromagnetic Biology and Medicine. 2017. 

Papers and Monographs

Austrian Medical Association. Guideline of the Austrian Medical Association for the diagnosis and treatment of EMF-related health problems and illnesses (EMF syndrome): Consensus paper of the Austrian Medical Association’s EMF Working Group. Vienna, Austria. Mar 2012.

Bioeffects of Selected Nonlethal Weapons. Addendum to the Nonlethal Technologies *Worldwide (NGIC-I 147-101-98) Study. Undated classified document released by the Dept of the Army Dec 13, 2006. http://apps.fcc.gov/ecfs/document/view?id=7022311621

BioInitiative Working Group. Sage C, Carpenter DO. (Eds). BioInitiative Report: A Rationale for  Biologically-based Exposure Standards for Low-Intensity Electromagnetic Radiation. www.bioinitiative.org, December 31, 2012. (29 chapter authors)

Council of Europe. Parliamentary Assembly. The potential dangers of electromagnetic fields and their effect on the environment. Doc. 12608. May 6, 2011. http://apps.fcc.gov/ecfs/document/view?id=7022311504

Dart P. Alterations in Hormone Physiology. Undated.

Dart P. Cell Phones and Risk of Brain Tumor. Undated.

Dart P. Consequences of Chronic Microwave RF Exposure. Undated.

Dart P. Effects of Microwave RF Exposure on Fertility. Undated.

Dart P. Health Effects of Microwave Radio Exposures: Acute Symptoms from RF Exposure. Undated. http://apps.fcc.gov/ecfs/document/view?id=7520940904

Dart P. Microwave RF Interacts with Molecular Structures. Undated.

Dart P, Cordes K, Elliott A. Public Health Implications of the Proposed Cell Phone Transmission Tower at Oakway Golf Course. Undated. http://apps.fcc.gov/ecfs/document/view?id=7022311419

Dart P, Cordes K, Elliott A, Knackstedt J, Morgan J, Wible P, Baker S. Biological and health effects of microwave radiofrequency transmissions: A review of the research literature. A report to Eugene Water and Electric Board. Jun 4, 2013.

European Environment Agency. Statement on Mobile Phones for Conference on Cell Phones and Health: Science and Public Policy Questions, Washington, 15 September 2009. http://apps.fcc.gov/ecfs/document/view?id=7022311538

Frey A. Opinion: Cell Phone Health Risk? The Scientist. Sep 25, 2012.

Frey AH. On the Safety of Cell Phone Radiation. British Medical Journal. Nov 7, 2011.

Glaser ZR. Bibliography of Reported Biological Phenomena (‘Effects’) and Clinical Manifestations Attributed to Microwave and Radio-Frequency Radiation: Research Report No. 2 Revised. Naval Medical Research Institute. Oct 4, 1971. Second printing w/ revisions. Apr 20, 1972. (Contains more than 2,000 references.) http://apps.fcc.gov/ecfs/document/view?id=7022311479

Goldsworthy A. The Biological Effects of Weak Electromagnetic Fields. Mar 2012.
http://apps.fcc.gov/ecfs/document/view?id=7022311211

Hardell L, Carlberg M, Gee D. Chapter 21. Mobile phone use and brain tumour risk: early warnings early actions?  In Emerging issues: Late lessons from early warnings: Science, precaution, innovation. European Environment Agency Report 1/2013. Jan 2013. Pp. 541-561. http://apps.fcc.gov/ecfs/document/view?id=7520941294

IARC. Non-Ionizing Radiation. Part 2. Radiofrequency Electromagnetic Fields. Volume 102. Lyon, France: International Agency for Cancer Research, World Health Organization. 
https://ecfsapi.fcc.gov/file/1071413202273/Monograph%20radiofrequecy%20radiation%20WHO%3AIARC.pdf

International EMF Scientist Appeal. August 25, 2019. 10 pp.
https://ecfsapi.fcc.gov/file/10916233196437/International_EMF_Scientist-Appeal%208-25-2019.pdf

Kane RC. Cellular Telephone Russian Roulette: A Historical and Scientific Perspective. New York: Vantage Press. 2001. http://apps.fcc.gov/ecfs/document/view?id=7520941881

Kucinich D. 112th H.R. 6358. A bill to examine, label, and communicate adverse human biological effects associated with exposure to electromagnetic fields from cell phones and other wireless devices. Congress. 2d Session. Aug 3, 2012.

Lai H. Exhibit D: An Update on Neurological Effects of Nonionizing Electromagnetic Fields. Mar, 2014. 169 pp.

Lai H. Exhibit E: An Update on the Genetic Effects of Nonionizing Electromagnetic Fields. Mar, 2014. 94 pp.
http://apps.fcc.gov/ecfs/document/view?id=7521098238

Lai H. Abstracts of research publications on the biological effects of radiofrequency and cell phone radiation (1990-2017). Dec 13, 2017. 1,013 pp.

Lai H. A summary of recent literature on neurobiological effects of radiofrequency radiation. in “Mobile Communications and Public Health” Markov, M. (ed.), CRC Press, Boca Raton, FL, 2018, Chapter 8, pp.187-222. https://ecfsapi.fcc.gov/file/10916020933093/Neurological%20effects%20of%20RF%20Henry%20Lai%20chapter%20Markov%202018.pdf

Lai H. Neurological effects of nonionizing electromagnetic fields. Oct 1, 2017. 237 pp. https://ecfsapi.fcc.gov/file/10916020933093/RFR-neurological-effects-%20Henry%20Lai%202017.pdf

Lai H. Abstracts of research publications on radiofrequency radiation and free radical (oxidative) effects. Apr 19, 2019. 118 pp.

Lai H. Radiofrequency radiation comet assay studies. Apr 1, 2013. 40 pp.

Lai H. Percent comparison showing effect vs. no effect in neurological effect studies. Aug, 2019. 1 p.

Lai H. Percent comparison showing effect vs. no effect in comet assay and free radical (oxidative) (radiofrequency radiation and static field/ extremely low frequency field effect studies. Dec, 2017 and Apr, 2019. 1 p.

Lai H. Abstracts of research publications on neurological effects of static and extremely-low frequency electromagnetic fields (2007-2019). Sep 13, 2019. 117 pp.

Lai H. Supplementary Material: Literature on free radical generation after exposure to static and extremely-low-frequency electromagnetic fields (as of July 2019). 63 pp.
https://ecfsapi.fcc.gov/file/10920151427784/Henry%20Lai-ELF%20static%20fields%20free%20radicals%20supplementary%20material%207-2019.pdf

Leszczynski, D. FCC, IEEE and ICNIRP should tighten safety standards. Washington Times Communities. Apr 9, 2013.

Markova E, Malmgren L, Belyaev I. Microwaves from Mobile Phones Inhibit 53BP1 Focus Formation in Human Stem Cells Stronger than in Differentiated Cells: Possible Mechanistic Link to Cancer Risk. Environ Health Perspect. 118(3):394-399. Mar 2010. http://apps.fcc.gov/ecfs/document/view?id=7022311529

Moskowitz JM. Comments on the 2012 GAO Report: “Exposure and Testing Requirements for Mobile Phones Should Be Reassessed”. Aug 15, 2012 (rev. Aug 24, 2012).

Moskowitz JM. Why the FCC Must Strengthen Radiofrequency Radiation Limits in the U.S.: A compilation of original press releases from April 2012 – November 2013. Nov 5, 2013.
http://bit.ly/1b9FG37

Moskowitz JM. Wireless radiation and EMF abstracts published from August, 2016 - August, 2019. School of Public Health University of California, Berkeley. Sep 13, 2019. 527 pp.
https://ecfsapi.fcc.gov/file/1091330786203/Wireless%20radiation%20and%20EMF%20abstracts%20August%202016%20-%20August%202019%20Joel%20Moskowitz%209-13-2019.pdf

Moskowitz JM. We have no reason to believe 5G is safe. Scientific American. Oct 17, 2019.
https://ecfsapi.fcc.gov/file/1018805901388/191017_Scientific_American_We%20Have%20No%20Reason%20to%20Believe%205G%20is%20Safe%20Moskowitz.pdf

Naval Medical Research Institute. Bibliography of reported biological phenomena ('effects') and clinical manifestations attributed to microwave and radio-frequency radiation. NTIS. 1972. https://ecfsapi.fcc.gov/file/1001034847591/Naval-Medical-Research-Institute-1972.pdf

National Toxicology Program. Report of Partial Findings from the National Toxicology Program Carcinogenesis Studies of Cell Phone Radiofrequency Radiation in Hsd: Sprague Dawley® SD rats (Whole Body Exposures). Draft 5/19/2016. https://ecfsapi.fcc.gov/file/60002090569.pdf

Powerwatch. 1,670 peer-reviewed scientific papers on electromagnetic fields and biology or health. Electromagnetic Radiation Safety. Oct 22, 2018.
https://ecfsapi.fcc.gov/file/1018805901388/181022_EMF%20Studies%20from%20Powerwatch.pdf

Roe S. We tested popular cellphones. Now the FCC is testing them. Chicago Tribune. Aug 21, 2019.  
https://ecfsapi.fcc.gov/file/1091340619273/We%20tested%20popular%20cellphones%20for%20radiofrequency%20radiation.%20Now%20the%20FCC%20is%20investigating.%20-%20Chicago%20Tribune.pdf

Russell C. Wireless Silent Spring. Santa Clara County Medical Association Bulletin. Oct 2018. https://ecfsapi.fcc.gov/file/1022423602512/Wireless%20Silent%20Spring_%20SCCMA%20Oct%202%2C%202018.pdf

Sierck  PH. Smart Meter—What We Know: Measurement Challenges and Complexities. A Technical Paper to Clarify RF Radiation Emissions and Measurement Methodologies. Encinitas, CA: ET&T Indoor Environmental Surveys. Dec 2011.

U.S. Department of the Army. Bioeffects of Nonlethal Weapons. Feb 17, 1998 (Unclassified Dec 13, 2006). https://ecfsapi.fcc.gov/file/7022311476.pdf

U.S. E.P.A. Electric and Magnetic Fields: An EPA Perspective on Research Needs and Priorities for Improving Health Risk Assessment. Washington: EPA. Dec 1992. http://apps.fcc.gov/ecfs/document/view?id=7022311520

U.S. EPA. EPA Comments to the Federal Communications Commission on FCC 93-142 April 1993. Notice of Proposed Rulemaking; Guidlines for Evaluating the Environmental Effects of Radiofrequency Radiation. http://bit.ly/2avzSMU

U.S. EPA. Letter from Norbert Hankin to Janet Newton re: inadequacy of FCC radiofrequency guidelines. Jul 16, 2002. https://ecfsapi.fcc.gov/file/7022311328.pdf

Wargo J, Taylor HS, Alderman N, Wargo L. Cell Phones: Technology | Exposures | Health Effects. Environment & Human Health, Inc. 2012. http://apps.fcc.gov/ecfs/document/view?id=7022311531

Wisz, J. Potential Hazards of Cellular Phone Radiation: Responses to Fear and Uncertainty. Harvard University. 2002. http://apps.fcc.gov/ecfs/document/view?id=60001335019