Tuesday, August 1, 2023

WHO Radiofrequency EMF Health Risk Assessment Monograph (EHC series)

WHO announces members of the Task Group 
on Radiofrequency Fields and Health Risks

The World Health Organization (WHO) announced the 21 experts selected for the Task Group on Radiofrequency Fields and Health Risks. These individuals are responsible for examining ten research reviews and making recommendations for the WHO Environmental Health Criteria (EHC) Monograph on Radio Frequency (RF) Fields and Health Risks to be published in 2023.

The list of 21 experts selected by the WHO for the Task Group on Radiofrequency Fields and Health Risks appears below along with information I compiled regarding task group members' EMF publications and affiliations with ICNIRP, the self-selected group that recommends RF exposure limits which are promoted by the WHO.

Eleven of the 21 individuals have current or past affiliations with ICNIRP. Most of the other individuals have published or presented papers defending ICNIRP's RF exposure limits. A recent study found that ICNIRP heavily cites its own members' research and that of their close colleagues to support the ICNIRP exposure limits (Nordhagen and Flydal, 2022).

Eight of the 21 experts have eight or fewer EMF articles listed in EMF-Portal's archive of 37,000 publications.

Not one of the 250 EMF scientists who signed the International EMF Scientist Appeal was selected by the WHO for the Task Group. Nor were any of these scientists selected to work on the ten research reviews that the Task Group will consider. Yet. signatories of the International EMF Scientist Appeal have more than 2,000 EMF publications listed in the EMF-Portal archive.

Apparently, the WHO has biased the selection of participants in the task group and the research reviews to ensure that the forthcoming WHO RF health risk monograph will support ICNIRP's weak RF exposure limits that fail to protect humans and other species from chronic exposure to low levels of radiofrequency radiation (ICBE-EMF, 2022). It's no wonder that much of the public distrusts the WHO if this is how the agency proceeds to "enhance its management of conflicts of interest as well as strengthen public trust and transparency."

Related posts:

--
WHO PUBLIC NOTICE: Task Group on Radiofrequency Fields and Health Risks
World Health Organization, Dec 15, 2022

PUBLIC NOTICE: Task Group on Radiofrequency Fields and Health Risks

Overview

In order to enhance its management of conflicts of interest as well as strengthen public trust and transparency in connection with WHO meetings and activities involving the provision of technical/normative advice, the names and brief biographies of individuals (“Published Information”) being considered for participation in a WHO-convened Guideline Development Group are disclosed for public notice and comment.

The Published Information is provided by the experts themselves and is the sole responsibility of the individuals concerned. WHO is not responsible for the accuracy, veracity and completeness of the Published Information provided. Furthermore, in no event will WHO be responsible or liable for damages in relation to the use of, and reliance upon, the Published Information.

The comments received by WHO through the public notice and comment process are treated confidentially. Any comments should be sent to this e-mail address: emfproject@who.int. Comments brought to the attention of WHO through this process are an integral component of WHO’s conflict of interest assessment process and are carefully reviewed. WHO reserves the right to discuss information received through this process with the relevant expert and disclose to this expert the name and affiliation of the provider of such information. Upon review and assessment of the information received through this process, WHO, in its sole discretion, may take appropriate management action in accordance with its policies.

Guideline Development Groups provide technical and/or normative advice and recommendations to WHO. Participation in a Guideline Development Group convened by WHO does not necessarily mean that the views expressed by the expert concerned are shared by WHO and/or represent the decisions or stated policy of WHO.

The list of participating experts, a summary of relevant interests disclosed by such experts, and any appropriate mitigation measures taken by WHO relating to the management of conflicts of interests, will be reported publicly in accordance with WHO policies.

https://www.who.int/publications/m/item/task-group-on-radiofrequency-fields-and-health-risks

--

Task Group on Radiofrequency Fields and Health Risks, 2023
WHO Headquarters, Geneva, Switzerland

Disclaimer

In order to enhance its management of conflicts of interest as well as strengthen public trust and transparency in connection with WHO meetings and activities involving the provision of technical/normative advice, the names and brief biographies of individuals (“Published Information”) being considered for participation in a WHO-convened Guideline Development Group are disclosed for public notice and comment.

The Published Information is provided by the experts themselves and is the sole responsibility of the individuals concerned. WHO is not responsible for the accuracy, veracity and completeness of the Published Information provided. Furthermore, in no event will WHO be responsible or liable for damages in relation to the use of, and reliance upon, the Published Information.

The comments received by WHO through the public notice and comment process are treated confidentially. Any comments should be sent to this e-mail address: emfproject@who.int. Comments brought to the attention of WHO through this process are an integral component of WHO’s conflict of interest assessment process and are carefully reviewed. WHO reserves the right to discuss information received through this process with the relevant expert and disclose to this expert the name and affiliation of the provider of such information. Upon review and assessment of the information received through this process, WHO, in its sole discretion, may take appropriate management action in accordance with its policies.

Guideline Development Groups provide technical and/or normative advice and recommendations to WHO. Participation in a Guideline Development Group convened by WHO does not necessarily mean that the views expressed by the expert concerned are shared by WHO and/or represent the decisions or stated policy of WHO.

The list of participating experts, a summary of relevant interests disclosed by such experts, and any appropriate mitigation measures taken by WHO relating to the management of conflicts of interests, will be reported publicly in accordance with WHO policies.

--

Following is a list of the 21 experts selected by the WHO for the Task Group on Radiofrequency Fields and Health Risks with some additional information appended. Download the document to see their biographies.

ZEEB Hajo (Chair)
Expertise: Epidemiologist
Qualifications: MSc, MD, PhD
Current position: Professor of Epidemiology
Institutional affiliation: Leibniz-Institute for Prevention Research and Epidemiology-BIPS (Bremen, Germany) and University of Bremen (Germany)
EMF-Portal: 1 EMF paper in 2010
Contributed to one of the review protocols for the WHO RF monograph with 3 ICNIRP co-authors

VERBEEK Jos (Methodologist)
Expertise: Occupational Physician by training, specialized in systematic reviews and guidelines of environmental and occupational health issues
Qualifications: MD, PhD
Current position: Senior Researcher
Institutional affiliation: University Medical Centers Amsterdam, Public and Occupational Health Department, Netherlands; Cochrane Work
EMF-Portal: 2 EMF papers in 2021-2022
Contributed to one of the review protocols for the WHO RF monograph with 3 ICNIRP co-authors

AHN Young Hwan
Expertise: Clinician - Neurosurgeon
Qualifications: MD, PhD
Current position: Professor of Neurosurgery
Institutional affiliation: Ajou University School of Medicine, Ajou University Hospital, Korea
EMF-Portal: 16 EMF papers from 2013-2022

AUVINEN Anssi
Qualifications: MD, PhD (epidemiology)
Current position: Professor of epidemiology
Institutional affiliation: Tampere University, Tampere, Finland
EMF-Portal: 41 EMF papers from 2013-2022
ICNIRP Scientific Expert Group (SEG): 2013 on

CARDIS Elisabeth
Expertise: Epidemiologist
Qualifications: PhD
Current position: Professor of Epidemiology, Head Radiation Programme
Institutional affiliation: Barcelona Institute of Global Health (ISGlobal), Spain
EMF-Portal: 79 EMF papers from 1997-2022
Corresponding member of ICNIRP; Standing Committee paper (2001)

DE SÈZE René
Expertise: researcher, background in physics and medicine; expertise in human and vivo studies, focused on the nervous and the endocrine system, and recently on thermal regulation and perception
Qualifications: MD, PhD, Docent
Current position: Senior scientist, end February 28th, 2023
Institutional affiliation: National Institute of Industrial Environment and Risks, under the umbrella of the Environment Ministry (Ecology), France
EMF-Portal: 54 EMF papers from 1991-2021

ELTITI Stacy
Expertise: Researcher
Qualifications: Ph.D.
Current position: Associate Professor of Psychology
Institutional affiliation: Rosemead School of Psychology, Biola University, USA
EMF-Portal: 8 EMF papers from 2007-2018

FIOCCHI Serena
Expertise: Bioelectromagnetics, EMF computational exposure assessment
Qualifications: PhD (Bioengineering)
Current position: Research Scientist
Institutional affiliation: CNR – National Research Council, Institute of Electronics, Information Engineering and Telecommunications (IEIIT), Italy
EMF-Portal: 62 EMF papers from 2011-2022

KAIJSER Magnus
Expertise: Clinician and Researcher
Qualifications: MD, PhD
Current positions: Senior Consultant in Neuroradiology, Professor of Epidemiology
Institutional affiliation: Department of Neuroradiology, Karolinska University Hospital, Institute of Environmental Medicine, Karolinska Institute, Sweden
EMF-Portal:  No EMF papers

KROMHOUT Hans
Expertise: Epidemiologist/exposure scientist
Qualifications: PhD, MSc
Current position: Full Professor
Institutional affiliation: Utrecht University, Institute for Risk Assessment Sciences, Netherlands
EMF-Portal:  92 EMF papers from 1991-2022

LAAKSO Ilkka
Expertise: Researcher
Qualifications: M.Sc.(Tech.), D.Sc.(Tech.)
Current position: Assistant Professor, Department of Electrical Engineering and Automation
Institutional affiliation: Aalto University, Finland
EMF-Portal: 82 EMF papers from 2097-2022
ICNIRP SEG: 2016 on

LEE Hae-June
Expertise: Researcher
Qualifications: DVM, PhD
Current position: Principal Researcher
Institutional affiliation: Korea Institute of Radiological & Medical Sciences
EMF-Portal: 35 EMF papers from 2006-2022

LOUGHRAN Sarah
Expertise: Research Scientist
Qualifications: PhD
Current position: Director, Radiation Research and Advice
Institutional affiliation: Australian Radiation Protection and Nuclear Safety Agency (ARPANSA)
EMF-Portal:  20 EMF papers from 2005-2021
ICNIRP SEG: 2013 on

MCGARR Gregory W.
Expertise: Thermal Physiology; Integrative Human Physiology
Qualifications: PhD
Current Position: Research Scientist; Adjunct Professor
Institutional Affiliation: Non-Ionizing Radiation Health Sciences Division, Consumer and Clinical Radiation
Protection Bureau, Health Canada; School of Human Kinetics, Faculty of Health Sciences, University of Ottawa
EMF-Portal: 2 EMF papers from 2016-2022

MODENESE Alberto
Expertise: occupational medicine, occupational epidemiology
Qualifications: PhD, MD
Current position: Occupational Physician, Post-Doc Researcher, Secretary of the ICOH Scientific Committee “Radiation and Work”
Institutional affiliation: a) Department of biomedical, metabolic and Neural Science, University of Modena & Reggio emilia, Italy; b) International Commission on Occupational Health (ICOH) – Scientific Committee “Radiation and Work”
EMF-Portal: 5 EMF papers from 2020-2022

OKOKON Enembe Oku
Expertise: public health physician, clinical lecturer, environmental epidemiologist
Qualifications: MD, PhD
Current position: Chief consultant; senior lecturer; Caldwell Research Fellow, NCEPH, Australian National University.
Institutional affiliation: University of Calabar, Nigeria; National Centre for Epidemiology and Population Health, Australian National University.
EMF-Portal: 1 EMF paper in 2014

SAVITZ David A.
Expertise: Epidemiologist
Qualifications: PhD
Current position: Professor of Epidemiology
Institutional affiliation: Brown University School of Public Health, Rhode Island, USA
EMF-Portal:  74 EMF papers from 1985-2015

SCHMIDT Janine
Expertise: Biologist
Qualifications: Diploma, Dr. rer. nat. (PhD in Science)
Current position: Senior Scientist, Competence Center for Electromagnetic fields
Institutional affiliation: German Federal Office for Radiation Protection (BfS)
EMF-Portal:  3 EMF papers from 2020-2021
ICNIRP is supported and housed in the German Federal Office for Radiation Protection

USHIYAMA Akira
Expertise: in vivo experiment
Qualifications: PhD, MPH
Current position: Director
Institutional affiliation: National Institute of Public Health, Japan
EMF-Portal:  25 EMF papers from 2004-2021

WATANABE Soichi
Expertise: RF EMF exposure expert
Qualifications: Doctor of Engineering
Current position: Director
Institutional affiliation: Electromagnetic Compatibility Laboratory, Electromagnetic Standards Research Center, Radio Research Institute, National Institute of Information and Communications Technology, Japan
EMF-Portal:  154 EMF papers from 1996-2023
ICNIRP Standing Committee: 2004 on; Commission: 2013 on

WU Tongning
Expertise: Exposure expert
Qualifications: PhD
Current position: Professorate senior engineer
Institutional affiliation: China Academy of Information and Communications Technology
EMF-Portal: 51(?) EMF papers from 2004-2022
ICNIRP SEG: 2019 on

--

September 1, 2021 (Updated August 28, 2023)

The World Health Organization (WHO) is undertaking a health risk assessment of radiofrequency (RF) electromagnetic fields (EMF) which will be published as a monograph in the Environmental Health Criteria (EHC) series. 

This monograph will update the 1993 monograph on radiofrequency fields (EHC #137).


According to Microwave News, the WHO originally began work on this monograph in January 2012 (WHO, 2016*) and planned to publish a new monograph by 2016. In 2014 the WHO released 11 chapters of a draft report for public comment, Comments on the draft report from the scientific community were highly critical. "After that the process stalled, and the RF EHC was stuck in limbo." 


Three years after the WHO planned to publish the formal risk assessment of all studied health outcomes, the WHO issued a call for ten systematic reviews of the RF effects research in October 2019 (see list below). This call had a short timeline to apply. "The lack of advance notice and the fast deadline have led some to question whether the WHO engineered the schedule to help ICNIRP stay in control." In 2020, WHO reissued the call for three of these reviews (SR2, SR4, SR10).
Although the WHO refused to state publicly whom they selected to conduct these reviews, most of the scientists' identities are now available since papers describing the research protocols for nine (all but SR10) of the forthcoming ten reviews have been published online (see abstracts below). 

Apparently, WHO only selected research groups whose members have not criticized ICNIRP's thermally-based exposure limits. Thus, no EMF scientists who signed the International EMF Scientist Appeal were selected. This biased selection process should be challenged by all who are concerned about protecting public or environmental health.

The ten research protocols are being published in a special issue of Environment International (see https://www.sciencedirect.com/journal/environment-international/special-issue/109J1SL7CXT).

To conduct the research reviews, the scientists will use a "tailored version" of the National Toxicology Program's OHAT risk of bias rating tool "for evaluating individual study risk of bias or internal validity – the assessment of whether the design and conduct of a study compromised the credibility of the link between exposure and outcome" (1-3). This tool has been recommended for assessing risk of bias in human environmental epidemiology studies (Eick et al., 2021; see abstract below). 

For the EHC monograph, "Confidence in evidence will be assessed in line with the GRADE approach."

A tool is only as good as the persons using it. Will the scientists that the WHO chose to conduct these reviews apply these tools in an unbiased manner? Or will they employ them to manufacture doubt about the validity of the thousands of peer-reviewed studies that assessed biologic and health effects from exposure to radio frequency fields?

Lagorio et al. (2021) while describing their research protocols forecast the conclusion of their review paper: "As systematic reviews cannot remedy limitations of the original studies, those (and our) syntheses are unlikely to produce conclusive evidence." So this review will likely call for more definitive research.

According to Chartres et al. (2022):

"A recent study found that tools that use an overall risk of bias rating may reduce the available evidence to evaluate the health effects of chemical exposures by excluding studies based on only one methodological or reporting limitation, leading to an inaccurate conclusion [136, 137]. These findings are consistent with the 2021 NAS report on the IRIS Program, which found, based on data from recent IRIS assessments that used such a risk of bias approach, that the proportion of human studies excluded from further consideration ranged from 0 to 50 percent for human epidemiological studies, and 0 to 41.5 percent for animal studies [70]. Recognizing this concern, two separate 2021 NAS reports recommended that “study evaluation ratings should not be used to exclude studies” [70], “Do not exclude studies based on risk of bias, study quality, or reporting quality” and “Do not use numeric scores to evaluate studies; replace them with domain-based scoring as is done in the tools used in the Navigation Guide and OHAT” [124].

To avoid discarding valuable information, risk of bias assessments should be performed for each individual study, and the evidence base should then be assessed in its entirety. This allows an exploration of the potential effects of various biases. The 2021 NAS report makes this point: “While there is inevitably variation in the internal validity and risk of bias across individual studies, it is standard practice to include all studies, even the studies with a high risk of bias into the evidence synthesis… Once a study is determined to be eligible, the study could be included in the synthesis and the risk-of-bias assessment and its limitations accounted for in any qualitative or quantitative synthesis… In the synthesis step, low-quality studies may be excluded as a sensitivity analysis, but it is inappropriate to leave them out of synthesis completely” [124]."  (4)

There has never been a perfect study--every study has either limited internal or construct validity and/or limited external validity or generalizability.

According to the National Research Council (2007):
"The extent to which particular scientific results constitute progress in knowledge or contribute to societal well-being is often contested. This is especially the case when scientific findings are uncertain or controversial and when they can be interpreted to support controversial policy choices....Assessing science, no matter how rigorous the methods that may be used, is ultimately a matter of interpretation. The possibility of competing interpretations of evidence is ever-present when using science indicators or applying any other analytic method for measuring the progress and impact of science." (5)
Papers describing the protocols have been published for nine of the ten reviews (all but SR10). Nine current and former members of ICNIRP are involved in the nine reviews with four members involved in multiple reviews: Feychting (SR1, SR3, SR5, SR7), Roosli (SR1, SR7, SR8), Karipidis (SR1, SR5), Wood (SR2, SR4), Danker-Hopfe (SR6), Kuhne (SR9), Marino (SR4), Oftedal (SR8), and Pophof (SR6).

ICNIRP is a group of self-selected scientists who engage in "groupthink" and promote weak RF exposure guidelines that protect humans only from health risks due to acute heating. According to Investigate Europe, a team of investigative journalists, members of ICNIRP have a history of coopting national health and international reviews of health effects to ensure support for their weak exposure limits. Hence, these scientists who have a vested interest in preserving weak RF exposure limits should not be allowed to participate in this official review of RF effects by the WHO.

References

(1) National Toxicology Program. Handbook for Conducting Systematic Reviews for Health Effects Evaluations. https://ntp.niehs.nih.gov/whatwestudy/assessments/noncancer/handbook/index.html

(2) National Toxicology Program. Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration (March 4, 2019): https://ntp.niehs.nih.gov/ntp/ohat/pubs/handbookmarch2019_508.pdf

(3) National Toxicology Program. 2019 OHAT Handbook Update and Clarification Summary Document (March 4, 2019). https://ntp.niehs.nih.gov/ntp/ohat/pubs/handbookclarificationmarch2019_508.pdf

(4) Chartres N, Sass JB, Gee D, Bălan SA, Birnbaum L, Cogliano VJ, Cooper C, Fedinick KP, Harrison RM, Kolossa-Gehring M, Mandrioli D, Mitchell MA, Norris SL, Portier CJ, Straif K, Vermeire T.​​ Conducting evaluations of evidence that are transparent, timely and can lead to health-protective actions. Environ Health. 2022 Dec 5;21(1):123. doi: 10.1186/s12940-022-00926-z. https://ehjournal.biomedcentral.com/articles/10.1186/s12940-022-00926-z 

(5) National Research Council. 2007. A Strategy for Assessing Science: Behavioral and Social Research on Aging. Washington, DC: The National Academies Press. https://doi.org/10.17226/11788.


Research Protocols for Radiofrequency EHC Reviews;



• RF-EMF was classified by IARC as possibly carcinogenic to humans (2B) in May 2011
• A systematic review of all subject-relevant epidemiological studies is now needed.
• A detailed protocol ensures the review's transparency, utility and credibility.
• Original study validity will be evaluated with a customized OHAT risk of bias tool.
• Internal coherence and external plausibility will inform conclusions.

Abstract

Background: The World Health Organization (WHO) has an ongoing project to assess potential health effects of exposure to radiofrequency electromagnetic fields (RF-EMF) in the general and working population. Here we present the protocol for a systematic review of the scientific literature on cancer hazards from exposure to RF-EMF in humans, commissioned by the WHO as part of that project.

Objective: To assess the quality and strength of the evidence provided by human observational studies for a causal association between exposure to RF-EMF and risk of neoplastic diseases.

Eligibility criteria: We will include cohort and case-control studies investigating neoplasia risks in relation to three types of exposure to RF-EMF: near-field, head-localized, exposure from wireless phone use (SR-A); far-field, whole body, environmental exposure from fixed-site transmitters (SR-B); near/far-field occupational exposures from use of handheld transceivers or RF-emitting equipment in the workplace (SR-C). While no restriction on tumour type will be applied, we will focus on selected neoplasms of the central nervous system (brain, meninges, pituitary gland, acoustic nerve) and salivary gland tumours (SR-A); brain tumours and leukaemias (SR-B, SR-C).

Information sources: Eligible studies will be identified through Medline, Embase, and EMF-Portal.

Risk-of-bias assessment: We will use a tailored version of the OHAT's tool to evaluate the study's internal validity.

Data synthesis: We will consider separately studies on different tumours, neoplasm-specific risks from different exposure sources, and a given exposure-outcome pair in adults and children. When a quantitative synthesis of findings can be envisaged, the main aims of the meta-analysis will be to assess the strength of association and the shape of the exposure-response relationship; to quantify the degree of heterogeneity across studies; and explore the sources of inconsistency (if any). When a meta-analysis is judged inappropriate, we will perform a narrative synthesis, complemented by a structured tabulation of results and appropriate visual displays.

Evidence assessment: Confidence in evidence will be assessed in line with the GRADE approach.

Funding: This project is supported by the World Health Organization. Co-financing was provided by the New Zealand Ministry of Health; the Istituto Superiore di Sanità in its capacity as a WHO Collaborating Centre for Radiation and Health; ARPANSA as a WHO Collaborating Centre for Radiation Protection.

Registration: PROSPERO CRD42021236798.





https://www.sciencedirect.com/science/article/pii/S0160412021004530?via%3Dihub

--

SR2: Effects of radiofrequency electromagnetic fields (RF EMF) on cancer in laboratory animal studies

Meike Mevissen, Jerrold M. Ward, Annette Kopp-Schneider, James P. McNamee, Andrew W. Wood, Tania M. Rivero, Kristina Thayer, Kurt Straif. Effects of radiofrequency electromagnetic fields (RF EMF) on cancer in laboratory animal studies. Environment International. Volume 161, 2022. 107106. doi: 10.1016/j.envint.2022.107106.

Abstract

Background  The carcinogenicity of radiofrequency electromagnetic fields (RF EMF) has been evaluated by the International Agency for Research on Cancer (IARC) in 2011. Based on limited evidence of carcinogenicity in humans and in animals, RF EMF were classified as possibly carcinogenic to humans (Group 2B). In 2018, based on a survey amongst RF experts, WHO prioritized six major topics of potential RF EMF related human health effects for systematic reviews. In the current manuscript, we present the protocol for the systematic review of experimental laboratory animal studies (cancer bioassays) on exposure to RF fields on the outcome of cancer in laboratory animals.

Objective  In the framework of WHO’s Radiation Program, the aim of this work is to systematically evaluate effects of RF EMF exposure on cancer in laboratory animals.

Study eligibility and criteria  WHO's Handbook (2014) for guideline development will be followed with appropriate adaptation. The selection of eligible studies will be based on Population, Exposures, Comparators, and Outcomes (PECO) criteria. We will include peer-reviewed articles and publicly available reports from government agencies reporting original data about animal cancer bioassays on exposure to RF EMF. The studies are identified by searching the following databases: MEDLINE (PubMed), Science Citation Index Expanded and Emerging Sources Citation Indes (Web of Science), Scopus, and the EMF Portal. No language or year-of-publication restrictions are applied. The methods and results of eligible studies will be presented in accordance with the PRISMA 2020 guidelines.

Study appraisal method  Study evaluation of individual studies will be assessed using a risk of bias (RoB) tool developed by the Office of Health Assessment and Translation (OHAT) with appropriate considerations including sensitivity for evaluating RF EMF exposure in animal cancer bioassays. The final evaluation on the certainty of the evidence on a carcinogenic risk of RF EMF exposure in experimental animals will be performed using the OHAT Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach with appropriate considerations. The protocol has been registered in an open-source repository (PROSPERO).

Funding  The study is partly financially supported by the World Health Organization. No additional funding was provided outside author salaries through their places of employment.

Declaration of Competing Interest   

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: AWW directs a research group, which includes three technical associates who are telecommunications company employees. 

JM receives employment and research support from The government of Canada related to the topic. KS has been the Head of the IARC Monographs program until his regular retirement (11/2018). Since 10/2019, he is a member of the International Scientific Advisory Committee of the Ramazzini Institute. This involves one 3 h advisory group meeting per year. He does not receive remuneration for his advisory activity. 

MM is a member of the scientific advisory board of The Swiss Research Foundation for Electricity and Mobile Communication (FSM) that receives research money from commercial entities. She does not receive remuneration for his advisory activity. Her partner does consulting relating to cell phone safety. All remaining authors declare no conflict of interest.


--

SR3: The effects of radiofrequency exposure on male fertility and adverse reproductive outcomes: A protocol for two systematic reviews of human observational studies with meta-analysis

Ryan P.W. Kenny, Evelyn Barron Millar, Adenike Adesanya, Catherine Richmond, Fiona Beyer, Carolina Calderon, Judith Rankin, Mireille Toledano, Maria Feychting, Mark S Pearce, Dawn Craig, Fiona Pearson. The effects of radiofrequency exposure on male fertility and adverse reproductive outcomes: A protocol for two systematic reviews of human observational studies with meta-analysis. Environ Int. 158, 2022, 106968. doi: 10.1016/j.envint.2021.106968.

Abstract

Background  The World Health Organization (WHO) is bringing together evidence on radiofrequency electromagnetic field (RF-EMF) exposure in relation to health outcomes, previously identified as priorities for evaluation by experts in the field, to inform exposure guidelines. A suite of systematic reviews are being undertaken by a network of topic experts and methodologists in order to collect, assess and synthesise data relevant to these guidelines. Here, we present the protocol for the systematic review on the effect of exposure to RF on adverse reproductive outcomes (human observational studies), also referred to as Systematic Review (SR) 3 within the series of systematic reviews currently being commissioned.

Objectives  Following the WHO handbook for guideline development and the COSTER conduct guidelines, we will systematically review the effect of RF-EMF exposure on both male fertility (SR3A) and adverse pregnancy outcomes (SR3B) in human observational studies. Herein we adhere to the PRISMA-P reporting guidelines.

Data sources  We will conduct a broad search for potentially relevant records relevant for both reviews within the following bibliographic databases: MEDLINE; Embase; and EMF Portal. We will also conduct searches of grey literature through relevant databases and organisational websites. RF-EMF experts will also be consulted. We will hand search citation and reference lists of included study records.

Study eligibility criteria  We will include quantitative human observational studies on the effect of RF-EMF exposure: (in SR3A) in adult male participants on infertility, sperm morphology, concentration or total sperm count or motility; and (in SR3B) in preconception adults or pregnant women on preterm birth, small for gestational age (associated with intrauterine growth restriction), miscarriage, stillbirth and congenital anomalies.

Study appraisal and synthesis methods  Titles, abstracts and then full texts will be screened in blinded duplicate against eligibility criteria with input from a third reviewer as required. Data extraction from included studies will be completed by two reviewers as will risk of bias assessment using the Office of Health Assessment and Translation (OHAT) tool. If appropriate we will undertake meta-analysis to pool effect measures and explore heterogeneity using sub-group analyses or meta-regression as feasible. We will conduct sensitivity analysis to assess the impact of any assumptions made throughout the review process. The OHAT methodology, based on the GRADE guidelines for evidence assessment, will be used to evaluate the certainty of evidence per outcome and to conclude the level of evidence of a health effect.

Conclusion  This manuscript details the protocols for two systematic reviews. The aims of publishing details of both protocols are to: pre-specify their scope and methods; reduce the impact of reviewer bias; promote transparency and replicability; and improve the review process.

Prospero registration CRD42021265401 (SR3A), CRD42021266268 (SR3B).

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Maria Feychting has a permanent position as Professor of Epidemiology at Karolinska Institutet, Stockholm Sweden since 2005. She has served as advisor to a number of national and international public advisory and research steering groups concerning the potential health effects of exposure to non-ionizing radiation, including the WHO (ongoing), Public Health England Advisory Group on Non-ionising Radiation - AGNIR (2009–2017), the Norwegian Public Health Institute (2010–2012), the Swedish Council for Working Life and Social Research (2003–2012), the Swedish Radiation Safety Authority’s independent scientific expert group on electromagnetic fields (2003–2011). She was member of the International Commission on Non-Ionizing Radiation Protection (ICNIRP), an independent body setting guidelines for non-ionizing radiation protection (2008–May 2020), and vice chairman of the Commission (May 2016–May 2020).

Mireille Toledano has been involved in funded research assessing mobile phone and other wireless technologies usage on health outcomes. The SCAMP (study cognition adolescents and mobile phones) prospective cohort study which is currently ongoing (2015–2021). The COSMOS (cohort study of mobile phone use and health) a longitudinal cohort study which is completed (2019).

Open access paper: https://www.sciencedirect.com/science/article/pii/S0160412021005936

--

SR4: Effects of Radiofrequency Electromagnetic Field (RF-EMF) exposure on male fertility and pregnancy and birth outcomes: Protocols for a systematic review of experimental studies in non-human mammals and in human sperm exposed in vitro

Francesca Pacchierotti, Lucia Ardoino, Barbara Benassi, Claudia Consales, Eugenia Cordelli, Patrizia Eleuteri, Carmela Marino, Maurizio Sciortino, Martin H.Brinkworth, Guangdi Chen, James P. McNamee, Andrew William Wood, Carlijn R. Hooijmans. Rob B.M. de Vries. Effects of Radiofrequency Electromagnetic Field (RF-EMF) exposure on male fertility and pregnancy and birth outcomes: Protocols for a systematic review of experimental studies in non-human mammals and in human sperm exposed in vitro. Environment Int. Volume 157, December 2021, 106806.

Highlights

• Male infertility and adverse pregnancy outcomes are relevant human health problems.
• Radiofrequency electromagnetic fields are widespread in the human environment.
• A link between radiofrequency and adverse reproductive outcomes is controversial.
• This is the protocol of WHO-funded systematic review and meta-analysis on this issue.

Abstract

Background  Radiofrequency Electromagnetic Fields (RF-EMF) at environmental level have been reported to induce adverse effects on the male reproductive system and developing embryos. However, despite the number of experiments conducted since the 1970s, the diversity of testing approaches and exposure conditions, inconsistencies among results, and dosimetric flaws have not yet permitted a solid assessment of the relationship between RF-EMF exposure and such effects, warranting a more systematic and methodologically rigorous approach to the evaluation of available data.

Objectives  This study aims at evaluating the effects of RF-EMF exposure on male fertility and pregnancy outcomes by a systematic review (SR) of experimental studies, conducted in compliance with international guidelines. The evidence will be organized into three streams: 1) Studies evaluating the impact of RF-EMF on the male reproductive system of experimental mammals; 2) studies evaluating the impact of RF-EMF on human sperm exposed in vitro; 3) studies evaluating the impact of RF-EMF on adverse pregnancy, birth outcomes and delayed effects in experimental mammals exposed in utero.

Study eligibility and criteria  Eligible studies will include peer-reviewed articles reporting of original results about effects of controlled exposures to RF-EMF in the frequency range 100 kHz–300 GHz on the selected outcomes without any language or year-of-publication restrictions. Eligible studies will be retrieved by calibrated search strings applied to three electronic databases, PubMed, Scopus and EMF Portal and by manual search of the list of references of included papers and published reviews.

Study appraisal and synthesis method  The internal validity of the studies will be evaluated using the Risk of Bias (RoB) Rating Tool developed by National Toxicology Program/Office of Health Assessment and Translation (NTP/OHAT) integrated with input from the SYRCLE RoB tool. Given sufficient commensurate data, meta-analyses will be performed, otherwise narrative syntheses will be produced. Finally, the certainty of the effects of RF-EMF exposure on male fertility and pregnancy and birth outcomes will be established following GRADE.

Funding  The study is financially supported by the World Health Organization.

Registration  OSF Registration DOI https://doi.org/10.17605/OSF.IO/7MUS3; PROSPERO CRD42021227729, CRD42021227746.

Financial support   This project is partially funded by the World Health Organization (contract 2020/1026306-0). Additional in-kind funds are provided by ENEA, Health Canada and Swinburne University of Technology.

Declaration of Competing Interest

AWW directs a research group, which includes three technical associates who are telecommunications company employees. The group is also providing advice for a local government authority and a utility on electric and magnetic field exposure issues on a fee-for-service basis. AWW has been member of the ICNIRP Scientific Expert Group (SEG) from 2013 until 2021 and collaborates with the Australian Radiation Protection and Nuclear Safety Agency. 

JPM was a member for IARC Monograph 102 Working Group assessing the carcinogenicity of RF-EMF (Mechanistic Studies sub-group), a co-author of Canada’s Safety Code 6 (which are the de facto national human exposure limits applied in Canada) and a member of the WHO EMF Project International Advisory Committee (Canadian representative). Health Canada financially contributed to the WHO EMF Project to support the completion of the systematic reviews on RF-EMF. 

CM has been member of Technical Consultation on the WHO RF Research Agenda (2010), member of ICNIRP main commission since May 2012, confirmed in 2016 and 2020, Italian delegate for the European Cost Actions BM0704 and BM1309 “EMF-MED”. 

All other authors declare that they have no known conflicts of interest.

Open access paper: 

--

SR5: The effect of long-term radiofrequency exposure on cognition in human observational studies: A protocol for a systematic review

Geza Benke, Michael J Abramson, B M Zeleke, Jordy Kaufman, Ken Karipidis, Helen Kelsall, Steve McDonald, Chris Brzozek, Maria Feychting, Sue Brennan. The effect of long-term radiofrequency exposure on cognition in human observational studies: A protocol for a systematic review. Environ Int. 158, 2022. doi: 10.1016/j.envint.2021.106972.

Highlights

• This protocol outlines the steps required for a systematic review of the effect of long-term radiofrequency exposure on cognition in human observational studies.
• The protocol allows for an assessment of possible cognitive effects due to RF-EMFs from personal, environmental and occupational exposure.
• The protocol follows the best methodology for synthesis and risk of bias assessment for RF-EMF exposure and cognition in human observational studies.

Abstract

Background: The long term effects of exposure to radiofrequency (RF) electromagnetic fields (EMF) for frequencies from 100 kHz to 300 GHz on cognitive performance are best assessed using observational studies. In recent years, the use of mobile (cell) phones has been the main source of RF EMF exposure to the brain, although other sources of exposure may be significant. Cognitive function includes various mental and psychological abilities, which can be measured in a range of domains, such as learning, memory, reasoning, problem solving, decision making and attention. Although effects on cognitive function may be most evident later in life, in the experimental setting acute and immediate effects can only be studied. Observational studies are needed when effects are observed after months or years following short or long-term exposure. The importance of the effects of exposure on children has also been recently identified.

Objectives: To assess the long-term effects of RF EMF local and whole-body exposure compared to no or a lower level of exposure on indicators of cognition, including complex attention, executive function, learning and memory, perceptual motor ability and social cognition, but excluding cognitive effects caused by neurodegenerative diseases or neurodevelopmental disorders, and to assess if there is evidence of a dose response relationship.

Study eligibility and criteria: We will include observational studies that have evaluated cognitive effects of RF energy including a comparator group with a different level of exposure. Studies must report at least one validated measure of cognitive function, including global or domain specific measures, or cognitive impairment, with a minimum follow-up of 6 months. Cohort or case-control studies published in the peer review literature in any language are eligible. We will exclude cross-sectional studies and any that only report brain structure or biomarkers.

Study appraisal and synthesis method: We will conduct searches of PubMed, Embase, PsycINFO and the EMF-Portal. At least two authors will independently screen the titles/abstracts of all records, with any conflicts resolved by a third reviewer. Full-text screening will also be conducted independently by two authors with conflicts resolved by consensus. Data will be extracted from the studies included, such as identifiers and characteristics of the study design, exposure and comparator groups, participants, outcomes assessed and results. Risk of bias will be assessed with the Office of Health Assessment and Translation (OHAT) tool. We will conduct a meta-analysis of similar studies with a random effects model in STATA or similar software, if two or more studies are available for a given exposure-outcome combination. Confidence in the body evidence will be judged using GRADE methods as adapted by OHAT for reviews of environmental exposures.

Funding  This project is funded by the World Health Organization. Co-financing was provided by ARPANSA in its capacity as a WHO Collaborating Centre for Radiation Protection.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Open access paper:
 
--

SR6: The effect of exposure to radiofrequency electromagnetic fields on cognitive performance in human experimental studies: A protocol for a systematic review

Blanka Pophof, Jacob Burns, Heidi Danker-Hopfe, Hans Dorn, Cornelia Egblomassé-Roidl, Torsten Eggert, Kateryna Fuks, Bernd Henschenmacher, Jens Kuhne, Cornelia Sauter, Gernot Schmid. The effect of exposure to radiofrequency electromagnetic fields on cognitive performance in human experimental studies: A protocol for a systematic review. Environ Int. 2021 Jul 29;157:106783. doi: 10.1016/j.envint.2021.106783.

Abstract

Background: The World Health Organization (WHO) is currently assessing the potential health effects of exposure to radiofrequency electromagnetic fields (RF-EMFs) in the general and working population. Related to one such health effect, there is a concern that RF-EMFs may affect cognitive performance in humans. The systematic review (SR) aims to identify, summarize and synthesize the evidence base related to this question. Here, we present the protocol for the planned SR.

Objectives: The main objective is to present a protocol for a SR which will evaluate the associations between short-term exposure to RF-EMFs and cognitive performance in human experimental studies.

Data sources: We will search the following databases: PubMed, Embase, Web of Science, Scopus, and the EMF-Portal. The reference lists of included studies and retrieved review articles will be manually searched.

Study eligibility and criteria: We will include randomized human experimental studies that assess the effects of RF-EMFs on cognitive performance compared to no exposure or lower exposure. We will include peer-reviewed articles of any publication date in any language that report primary data.

Data extraction and analysis: Data will be extracted according to a pre-defined set of forms developed and piloted by the review author team. To assess the risk of bias, we will apply the Rating Tool for Human and Animal Studies developed by NTP/OHAT, supplemented with additional questions relevant for cross-over studies. Where sufficiently similar studies are identified (e.g. the heterogeneity concerning population, exposure and outcome is low and the studies can be combined), we will conduct random-effects meta-analysis; otherwise, we will conduct a narrative synthesis.

Assessment of certainty of evidence: The certainty of evidence for each identified outcome will be assessed according to Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Performing the review according to this protocol will allow the identification of possible effects of RF-EMFs on cognitive performance in humans. The protocol has been registered in PROSPERO, an open-source protocol registration system, to foster transparency.

Financial support  This project is funded by the World Health Organization.

Registration  PROSPERO CRD42021236168.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Open access paper

--

SR7: The effects of radiofrequency electromagnetic fields exposure on tinnitus, migraine and non-specific symptoms in the general and working population: A protocol for a systematic review on human observational studies

Martin Röösli, Stefan Dongus, Hamed Jalilian, Maria Feychting, John Eyers, Ekpereonne Esu, Chioma Moses Oringanje, Martin Meremikwu, Xavier Bosch-Capblanch. The effects of radiofrequency electromagnetic fields exposure on tinnitus, migraine and non-specific symptoms in the general and working population: A protocol for a systematic review on human observational studies. Environ Int, Volume 157, 2021. doi: 10.1016/j.envint.2021.106852.

Highlights

• There is public concern to develop non-specific symptoms from EMF.
• No up to date comprehensive systematic review is available.
• Priority outcomes for head exposure are tinnitus, migraine, and headaches.
• Further priority outcomes are sleep disturbances and composite symptom scores.

Abstract

Background  Applications emitting radiofrequency electromagnetic fields (RF-EMF; 100 kHz to 300 GHz) are widely used for communication (e.g. mobile phones), in medicine (diathermy) and in industry (RF heaters). Concern has been raised that RF-EMF exposure affects health related quality of life, because a part of the population reports to experience a variety of symptoms related to low exposure levels below regulatory limits.

Objectives  To systematically review the effects of longer-term or repeated local and whole human body RF-EMF exposure on the occurrence of symptoms evaluating migraine, tinnitus, headaches, sleep disturbances and composite symptom scores as primary outcomes.

Methods  We will follow the WHO handbook for guideline development. For the development of the systematic review protocol we considered handbook for conducting systematic reviews for health effects evaluations from the National Toxicology Program-Office of Health Assessment and Translation (NTP-OHAT) and COSTER (Recommendations for the conduct of systematic reviews in toxicology and environmental health research).

Eligibility criteria  Peer-reviewed epidemiological studies in the general population or workers aiming to investigate the association between local or whole-body RF-EMF exposure for at least one week and symptoms are eligible for inclusion. Only cohort, case-control and panel studies will be included.

Information sources  We will search the scientific literature databases Medline, Web of Science, PsycInfo, Cochrane Library, Epistemonikos and Embase, using a predefined search strategy. This search will be supplemented by a search in the EMF-Portal and checks of reference lists of relevant papers and reviews.

Study appraisal and synthesis method  Data from included papers will be extracted according to predefined forms. Findings will be summarized in tables, graphical displays and in a narrative synthesis of the available evidence, complemented with meta-analyses. We will separately review effects of local, far field and occupational exposure.

Risk of bias The internal validity of included studies will be assessed using the NTP-OHAT Risk of Bias Rating Tool for Human and Animal Studies, elaborated to observational RF-EMF studies.

Evidence appraisal  To rate certainty of the evidence, we will use the OHAT GRADE-based approach for epidemiological studies.

Framework and funding  This protocol concerns one of the ten different systematic reviews considered in a larger systematic review of the World Health Organization to assess potential health effects of exposure to RF-EMF in the general and working population.

Registration PROSPERO CRD42021239432.

Open access paper: https://www.sciencedirect.com/science/article/pii/S0160412021004773?via%3Dihub

--

SR8: The effects of radiofrequency electromagnetic fields exposure on human self-reported symptoms: A protocol for a systematic review of human experimental studies

Xavier Bosch-Capblanch, Ekpereonne Esu, Stefan Dongus, Chioma Moses Oringanje, Hamed Jalilian, John Eyers, Gunnhild Oftedal, Martin Meremikwu, Martin Röösli. The effects of radiofrequency electromagnetic fields exposure on human self-reported symptoms: A protocol for a systematic review of human experimental studies. Environ Int. 158, 2022, 106953. doi: 10.1016/j.envint.2021.106953.

Abstract

Background  The technological applications of radiofrequency electromagnetic fields (RF-EMF) have been steadily increasing since the 1950s across multiple sectors exposing large proportions of the population. This fact has raised concerns related to the potential consequences to people’s health. The World Health Organization (WHO) is assessing the potential health effects of exposure to RF-EMF and has carried out an international survey amongst experts, who have identified six priority topics to be further addressed through systematic reviews, whereof the effects on symptoms is one of them. We report here the systematic review protocol of experimental studies in humans assessing the effects of RF-EMF on symptoms.

Objective  Our objectives are to assess the effects of exposure to electromagnetic fields (compared to no or lower exposure levels) on symptoms in human subjects. We will also assess the accuracy of perception of presence of exposure in volunteers with and without idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF).

Eligibility criteria  We will search relevant literature sources (e.g. the Web of Science, Medline, Embase, Epistemonikos) for randomized trials (comparing at least two arms) and randomised crossover trials of RF-EMF exposure that have assessed the effects on symptoms. We will also include studies that have measured the accuracy of the perception of the presence or absence of exposure. We will include studies in any language.

Study appraisal and synthesis  Studies will be assessed against inclusion criteria by two independent reviewers. Data on study characteristics, participants, exposure, comparators and effects will be extracted using a specific template for this review, by two independent reviewers. Discrepancies will be solved by consensus. Risk of bias (ROB) will be assessed using the ROB Rating Tool for Human and Animal Studies and the level of confidence in the evidence of the exposure-outcome relations will be assessed using the GRADE approach. For the perception studies, we will use adapted versions of the ROB tool and GRADE assessment. Where appropriate, data will be combined using meta-analytical techniques.


--

SR9: The effect of radiofrequency electromagnetic fields (RF-EMF) on biomarkers of oxidative stress in vivo and in vitro: A protocol for a systematic review

Bernd Henschenmacher, Annette Bitsch, Tonia de las Heras Gala, Henry Jay Forman, Athanassios Fragoulis, Pietro Ghezzi, Rupert Kellner, Wolfgang Koch, Jens Kuhne, Dmitrij Sachno, Gernot Schmid, Katya Tsaioun, Jos Verbeek, Robert Wright. The effect of radiofrequency electromagnetic fields (RF-EMF) on biomarkers of oxidative stress in vivo and in vitro: A protocol for a systematic review. Environ Int. 158, 2022, 106932. doi: 10.1016/j.envint.2021.106932.

Abstract

Background  Oxidative stress is conjectured to be related to many diseases. Furthermore, it is hypothesized that radiofrequency fields may induce oxidative stress in various cell types and thereby compromise human and animal health. This systematic review (SR) aims to summarize and evaluate the literature related to this hypothesis.

Objectives  The main objective of this SR is to evaluate the associations between the exposure to radiofrequency electromagnetic fields and oxidative stress in experimental models (in vivo and in vitro).

Methods  The SR framework has been developed following the guidelines established in the WHO Handbook for Guideline Development and the Handbook for Conducting a Literature-Based Health Assessment). We will include controlled in vivo and in vitro laboratory studies that assess the effects of an exposure to RF-EMF on valid markers for oxidative stress compared to no or sham exposure. The protocol is registered in PROSPERO.

We will search the following databases: PubMed, Embase, Web of Science Core Collection, Scopus, and the EMF-Portal. The reference lists of included studies and retrieved review articles will also be manually searched.

Study appraisal and synthesis method  Data will be extracted according to a pre-defined set of forms developed in the DistillerSR online software and synthesized in a meta-analysis when studies are judged sufficiently similar to be combined. If a meta-analysis is not possible, we will describe the effects of the exposure in a narrative way.

Risk of bias  The risk of bias will be assessed with the NTP/OHAT risk of bias rating tool for human and animal studies.

We will use GRADE to assess the certainty of the conclusions (high, moderate, low, or inadequate) regarding the association between radiofrequency electromagnetic fields and oxidative stress.

Funding  This work was funded by the World Health Organization (WHO).

Registration  The protocol was registered on the PROSPERO webpage on July 8, 2021.

Open access paper: https://www.sciencedirect.com/science/article/pii/S0160412021005572

--

Prioritizing health outcomes when assessing the effects of exposure to radiofrequency electromagnetic fields: A survey among experts

Jos Verbeek, Gunnhild Oftedal, Maria Feychting, Eric van Rongen, Maria Rosaria Scarfì, Simon Mann, Rachel Wong, Emilie van Deventer. Prioritizing health outcomes when assessing the effects of exposure to radiofrequency electromagnetic fields: A survey among experts. Environ Int. 146, 2021. 106300. 
doi:10.1016/j.envint.2020.106300.

Highlights

• RF EMF may lead to other than heat-related health effects by yet unknown mechanisms
• Prioritizing health effects is needed for review utility and resource efficiency.
• RF EMF experts prioritized all peer-reviewed published biological and health outcomes.
• Cancer, heat-related effects, and adverse birth outcomes were rated most critical.
• WHO commissioned ten systematic reviews of the most critical health outcomes.

Abstract

Exposure to radiofrequency (RF) electromagnetic fields (EMF) (frequencies of 100 kHz to 300 GHz) has been steadily increasing. In addition to heat-related effects of RF EMF, other yet-unspecified biological effects, might exist which could possibly lead to health effects. Given the large number of health endpoints that have been studied, we wanted to prioritize those that would merit systematic reviews.

We developed a survey listing of all health endpoints reported in the literature and we asked 300 RF EMF experts and researchers to prioritize these health effects for systematic review as critical, important or unimportant. We also asked the experts to provide the rationale for their prioritization.

Of the 300 RF EMF experts queried, 164 (54%) responded. They rated cancer, heat-related effects, adverse birth outcomes, electromagnetic hypersensitivity, cognitive impairment, adverse pregnancy outcomes and oxidative stress as outcomes most critical regarding RF EMF exposure. For these outcomes, systematic reviews are needed. For heat-related outcomes, the experts based their ranking of the critical outcomes on what is known from human or animal studies, and for cancer and other outcomes, they based their rating also on public concern.

To assess health risks of an exposure in a robust manner, it is important to prioritize the health outcomes that should be systematically reviewed. Here we have shown that it feasible to do so in an inclusive and transparent way.

Excerpts

Given the limited resources available for systematic reviews, it was decided to include male fertility but not brain electrical function. The ratings of these two outcomes as critical were similar, but more experts rated male fertility as important....

Declaration of Competing Interest

MF was vice chairman (May 2016 – May 2020) of the International Commission on Non-Ionizing Radiation Protection, an independent body setting guidelines for non-ionizing radiation protection. She has served as advisor to several national and international public advisory and research steering groups concerning the potential health effects of exposure to non-ionizing radiation.

MRS is in the Scientific Council of the Swedish Radiation Safety Authority for preparing reports on the evaluation of the scientific literature related to electromagnetic fields and health.

GO is member of the International Commission on Non-Ionizing Radiation Protection. She has been member of groups appointed by Norwegian authorities to evaluate potential health effects of non-ionizing electromagnetic fields.

EvR was chairman (May 2016 – May 2020) of the International Commission on Non-Ionizing Radiation Protection and is currently vice-chairman. He is also member of the Scientific Council of the Swedish Radiation Safety Authority.

SM is a member of the International Commission on Non-Ionizing Radiation Protection’s Scientific Expert Group. Within the UK, he is Secretary to the Committee on Medical Aspects of Radiation in the Environment and he was Secretary (until 2017) to the Advisory Group on Non-Ionising Radiation.

All other authors have declared no conflict of interest.


--

Assessing risk of bias in human environmental epidemiology studies using three tools: different conclusions from different tools

Stephanie M. Eick, Dana E. Goin, Nicholas Chartres, Juleen Lam, Tracey J. Woodruff. Assessing risk of bias in human environmental epidemiology studies using three tools: different conclusions from different tools. Syst Rev 9, 249 (2020). doi: 10.1186/s13643-020-01490-8.

Abstract

Background  Systematic reviews are increasingly prevalent in environmental health due to their ability to synthesize evidence while reducing bias. Different systematic review methods have been developed by the US National Toxicology Program’s Office of Health Assessment and Translation (OHAT), the US Environmental Protection Agency’s (EPA) Integrated Risk Information System (IRIS), and by the US EPA under the Toxic Substances Control Act (TSCA), including the approach to assess risk of bias (ROB), one of the most vital steps which is used to evaluate internal validity of the studies. Our objective was to compare the performance of three tools (OHAT, IRIS, TSCA) in assessing ROB.

Methods  We selected a systematic review on polybrominated diphenyl ethers and intelligence quotient and/or attention deficit hyperactivity disorder because it had been endorsed by the National Academy of Sciences. Two reviewers followed verbatim instructions from the tools and independently applied each tool to assess ROB in 15 studies previously identified. We documented the time to apply each tool and the impact the ROB ratings for each tool had on the final rating of the quality of the overall body of evidence.

Results  The time to complete the ROB assessments varied widely (mean = 20, 32, and 40 min per study for the OHAT, IRIS, and TSCA tools, respectively). All studies were rated overall “low” or “uninformative” using IRIS, due to “deficient” or “critically deficient” ratings in one or two domains. Similarly, all studies were rated “unacceptable” using the TSCA tool because of one “unacceptable” rating in a metric related to statistical power. Approximately half of the studies had “low” or “probably low ROB” ratings across all domains with the OHAT and Navigation Guide tools.

Conclusions  Tools that use overall ROB or study quality ratings, such as IRIS and TSCA, may reduce the available evidence to assess the harms of environmental exposures by erroneously excluding studies, which leads to inaccurate conclusions about the quality of the body of evidence. We recommend using ROB tools that circumvent these issues, such as OHAT and Navigation Guide.


==

EHC on Radiofrequency fields* (WHO, 2016)

Excerpt from: 

World Health Organization. The International EMF Project Progress Report. June 2015-2016. page 10. https://cdn.who.int/media/docs/default-source/radiation-international-emf-project-reports/emf-iac-2016-progress-report.pdf?sfvrsn=7b2836c0_2. Accessed 01/17/2022.
"Following on the publication of the INTERPHONE study (May 2010) and the IARC classification of RF fields (May 2011), the health risk assessment of radiofrequency fields by WHO was started with a kick-off meeting in January 2012. A core group of 6 experts has been gathered to help with the development of the monograph. They, in turn, have enlisted the help of close to 30 experts to develop different sections of the first draft. Monthly conference calls have been held over the past year. A face-to-face meeting was convened in Istanbul in May 2015.

A number of systematic reviews have been performed based on published peer-reviewed data. Search strategies, inclusion/exclusion criteria and quality criteria have been developed for the different types of studies. A first draft was uploaded on the WHO website in the Fall of 2014. Over 90 entries were filed electronically through the consultation providing around 700 comments to different chapters and section of the draft. Over 300 missing papers were identified through this useful step. Each submission has been carefully considered by the Core Group and the draft has been revised to take account of relevant comments and of papers published since December 2012. As a result of the consultation, a new chapter on biochemical and biological effects was added.

The drawing of conclusions from the literature and the drafting of these chapters is the remit of a formal Task Group that will be convened by WHO following due process. The meeting of the Task Group is currently slated to be held in the Fall of 2016."

==

In March 1993, almost 30 years ago, the WHO published the last EHC monograph on radiofrequency radiation:


Electromagnetic fields (‎300 Hz to 300 GHz)

Environmental Health Criteria Monograph No.137

Overview

"WHO's assessment of any health risks produced by EMF emitting technologies falls within the responsibilities of the International EMF Project. One of the goals of the International EMF Project is therefore to carry out health risk assessments of RF, ELF and static fields, published in the Environmental Health Criteria.

The health risk assessments are the result of in-depth critical reviews conducted through independent, scientific peer-review groups. The are usually undertaken if new data are available that would substantially change the evaluation, if there is public concern for health or environmental effects of the agent because of greater exposure, or if an appreciable time period has elapsed since the last evaluation."

https://www.who.int/publications/i/item/9241571373