Thursday, April 27, 2017

Is 5G Cellular Technology Harmful to Our Health?

Recent millimeter wave bioeffect studies are listed below.

August 17, 2016 (Updated August 19)

5G cellular technology will employ much higher frequency microwaves than current cell phone technologies: 2G, 3G, and 4G.  These microwaves, known as millimeter waves, won't penetrate building materials like the current technology which is why industry may need one cell antenna base station for every 12 homes. 
But millimeter waves can affect your eyes and penetrate your skin.

When the Los Angeles Times reporter contacted me for the story below, I did a quick search and found several recently published articles examining biological effects of millimeter waves (see references below). This form of microwave radiation is most likely to affect our skin and neuronal cells in the upper dermis.

Moreover, widespread adoption of 5G cellular technology in the U.S. may have profound effects on our ecosystem by altering bacteria, possibly creating harmful bacteria that are resistant to antibiotics.

History has proved that we cannot trust the FCC and the FDA to protect our health from microwave radiation exposure.


I submitted an open letter to the FCC in July calling for "an independent review of the biologic and health research to determine whether the RF standards should be modified before allowing additional spectrum to be used for new commercial applications."

Moreover, the FCC has ignored the 800-plus submissions that call upon the agency to adopt rigorous radio frequency standards to protect the public’s health. Instead the agency maintains its 20-year old exposure guidelines that control only for heating or thermal risks. The FDA has ignored the thousands of studies that find nonthermal biologic effects, and the human studies that find a wide range of health effects including increased cancer risk and reproductive harm from exposure to low intensity microwaves.
In my opinion, precaution is warranted before unleashing 5G technology on the world. I suspect most of the 221 scientists who signed the International EMF Scientist Appeal (referenced in the article below), would support this assertion.

However, more research is also needed as specific characteristics of the millimeter waves (e.g., pulsing, modulation) to be employed in 5G cellular technology may be more important than the frequency or intensity of the waves in terms of biologic and health effects. The research funding must be independent of industry as conflicts of interest have been found to undermine the science in this field.
For an unbiased summary of the partial findings of the National Toxicology Program study of cancer risk from 2G cell phone radiation, see http://www.saferemr.com/2016/05/national-toxicology-progam-finds-cell.html.

--

Is 5G technology dangerous? Early data shows a slight increase of tumors in male rats exposed to cellphone radiation

Jim Puzzanghera, Los Angeles Times, Aug 8, 2016

--

 Low-intensity millimeter waves used for pain therapy have side effects

The Russians have pioneered millimeter wave therapy (MWT) using low intensity millimeter waves to reduce pain including headaches, joint pain, and postoperative pain.

Although the following review paper documents some positive effects from short-term exposure to MWT, the authors note that there are side effects including fatigue, sleepiness, and paresthesia (an abnormal sensation, tingling or pricking [“pins and needles”] caused by pressure on or damage to peripheral nerves). 

"We conclude that there is promising data from pilot case series and small-scale randomized controlled trials for analgesic/hypoalgesic effects of electromagnetic millimeter waves in frequency range 30–70 GHz. Large-scale randomized controlled trials on the effectiveness of this non-invasive therapeutic technique are necessary." 
"In the studies reviewed the authors did not report any health-related side effects of MWT. Slight paresthesias, previously mentioned in several case reports and non-controlled case series (10,11), appeared in almost 50% of patients in studies where the effects of MWT were carefully described (21,27,28,31). The paresthesias were of short duration and reported as pleasant (‘warmth’) or neutral. General fatigue and sleepiness during the treatment sessions in almost 80% of the patients was a rather desirable side effect of MWT, as also described in previous reviews on biomedical effects of MWT (10,11,21,27,28)."
From: Usichenko TI, Edinger H, Gizhko VV, Lehmann C, Wendt M, Feyerherd F. Low-intensity electromagnetic millimeter waves for pain therapy. Evid Based Complement Alternat Med. 2006 Jun;3(2):201-7. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1475937/
Little research is available on long-term exposure to millimeter waves (see below). Most of the studies referred to in this review paper did not modulate or pulse the carrier waves which will be required for information-carrying millimeter waves employed in 5G technologies. Prior research suggests that such waves will be more biologically active than pure sine waves.

--

Effects of Millimeter Waves Radiation on Cell Membrane - A Brief Review

Ramundo-Orlando A.  Effects of millimeter waves radiation on cell membrane - A brief review.  J Infrared Milli Terahz Waves. 2010; 30 (12): 1400-1411.

Abstract

The millimeter waves (MMW) region of the electromagnetic spectrum, extending from 30 to 300 GHz in terms of frequency (corresponding to wavelengths from 10 mm to 1 mm), is officially used in non-invasive complementary medicine in many Eastern European countries against a variety of diseases such gastro duodenal ulcers, cardiovascular disorders, traumatism and tumor. On the other hand, besides technological applications in traffic and military systems, in the near future MMW will also find applications in high resolution and high-speed wireless communication technology. This has led to restoring interest in research on MMW induced biological effects. In this review emphasis has been given to the MMW-induced effects on cell membranes that are considered the major target for the interaction between MMW and biological systems.


Excerpts

 “Several studies on the effects induced by millimeter radiation on biological systems have been reported in the literature. Diverse effects have been observed on cell free systems, cultured cells, isolated organs of animals and humans. The subject has been extensively reviewed by Motzkin [17] and more recently by Pakhomov [3]. At the cellular level these effects are mainly on the membrane process and ion channels, molecular complexes, excitable and other structures. Many of these effects are quite unexpected from a radiation penetrating less than 1 mm into biological tissues [3, 18, 19]. However none of the findings described in the above reviews has been replicated in an independent laboratory, thus they cannot be considered as established biological effects.”

“…a large number of cellular studies have indicated that MMW may alter structural and functional properties of membranes (Table 2).”

Conclusion

“In this review emphasis has been given to the low-level MMW effects on cell membranes. Above all, it should be mentioned that the reported effects are of a non-thermal character, that is, the action of radiation does not produce essential heating of the biological system or destroy its structure. In this context it appears that no permanent structural change of lipid bilayer could arise under low level (less than 10 mW/cm2) millimeter waves irradiation.

On the other hand, MMW radiation may affect intracellular calcium activities, and, as a consequence, several cellular and molecular processes controlled by Ca2+ dynamics themselves. The effects of MMW radiation on ion transport may be the consequence of a direct effect on membrane proteins as well as on phospholipid domain organization. Water molecules seem to play an important role in these biological effects of MMW radiation. Unfortunately, detailed cellular and molecular mechanisms mediating physiological responses to MMW exposure remain largely unknown.

Usually the search at a molecular level is simpler if we can reduce the complexity of our biological samples. This is the case for cell membranes by using model systems. They can be formed by a simple lipid bilayer without interfering components and they give independence from biological activity that can create complication in searching for electromagnetic fields bioeffects. The emphasis is on the search for molecular mechanisms of the membrane effect induced by MMW with different frequencies and power density. Furthermore, replication studies are needed including good temperature control and appropriate internal control samples. It is also advantageous if the future studies are multidisciplinary, invoking an integration of high quality exposure and effects methodologies.

Clearly a significant amount of accurate experimental work is still required in order to fully understand the interactions between MMW radiation and cell membrane.”


Recent Millimeter Wave Bioeffect Studies
(Updated: April 7, 2017)

Haas AJ, Le Page Y, Zhadobov M, Sauleau R, Dréan YL, Saligaut C. Effect of acute millimeter wave exposure on dopamine metabolism of NGF-treated PC12 cells. J Radiat Res. 2017 Feb 24:1-7. doi: 10.1093/jrr/rrx004. 
https://www.ncbi.nlm.nih.gov/pubmed/28339776

Gandhi OP, Riazi A. Absorption of millimeter waves by human beings and its biological implications. IEEE Transactions on Microwave Theory and Techniques. MTT-34(2):228-235. 1986. http://bit.ly/2oS3rKD

Haas AJ, Le Page Y, Zhadobov M, Sauleau R, Le Dréan Y. Effects of 60-GHz millimeter waves on neurite outgrowth in PC12 cells using high-content screening. Neurosci Lett. 2016 Apr 8;618:58-65. doi: 10.1016/j.neulet.2016.02.038. Epub 2016 Feb 26.

Le Dréan Y, Mahamoud YS, Le Page Y, Habauzit D, Le Quément C, Zhadobov M, Sauleau R. State of knowledge on biological effects at 40–60 GHz. Comptes Rendus Physique, 14(5):402-411. 2013.
http://www.sciencedirect.com/science/article/pii/S1631070513000480

Sivachenko IB, Medvedev DS, Molodtsova ID, Panteleev SS, Sokolov AY, Lyubashina OA. Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine. Bull Exp Biol Med. 2016 Feb;160(4):425-8. doi: 10.1007/s10517-016-3187-7. Epub 2016 Feb 22.

Soghomonyan D, Trchounian K, Trchounian A. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria? Appl Microbiol Biotechnol. 2016 Jun;100(11):4761-71. doi: 10.1007/s00253-016-7538-0. Epub 2016 Apr 18.