Thursday, March 2, 2017

Effect of Mobile Phones on Sperm Quality


Bin-Meferij MM, El-Kott AF. The radioprotective effects of Moringa oleifera against mobile phone electromagnetic radiation-induced infertility in rats.Int J Clin Exp Med. 2015 Aug 15;8(8):12487-97. http://1.usa.gov/1MURLR1

--
REVIEW  PAPERS

Sepehrimanesh, M. & Davis, D.L. Proteomic impacts of electromagnetic fields on the male reproductive system. Comp Clin Pathol (2016). doi:10.1007/s00580-016-2342-x. Epub ahead of print: Oct 13, 2016.

Abstract


The use of mobile phones and other wireless transmitting devices is increasing dramatically in developing and developed countries, as is the rate of infertility. A number of respected infertility clinics in Australia, India, USA, and Iran are reporting that those who regularly use mobile phones tend to have reduced sperm quantity and quality. Some experimental studies have found that human sperm exposed to electromagnetic fields (EMF), either simulated or from mobile phones, developed biomarkers of impaired structure and function, as well as reduced quantity. These encompass pathological, endocrine, and proteomic changes. Proteins perform a vast array of functions within living organisms, and the proteome is the entire array of proteins—the ultimate biomolecules in the pathways of DNA transcription to translation. Proteomics is the art and science of studying all proteins in cells, using different techniques. This paper reviews proteomic experimental and clinical evidence that EMF acts as a male-mediated teratogen and contributor to infertility.

Conclusions

As among the most rapidly proliferating human cells, spermatogenesis and associated activities offer an important endpoint for evaluation. More than 60 different compounds or industrial processes have been identified as increasing defects in human sperm or testicular tissue and possibly increasing the risk to offspring from male-mediated exposures. In this study, we reviewed structural and functional proteomic changes related to EMF exposure. Reported changes are categorized based on main affected tissue and also the most important adverse effects. Overall, these results demonstrate significant effects of radio frequency-modulated EMF exposure on the proteome, including both structural and functional impacts such as a decrease in the diameter and weight of the seminiferous tubules and the mean height of the germinal epithelium (Ozguner et al. 2005) and/or pathological and physiological changes in key biochemical components of the testicular tissues (Luo et al. 2013). These structural and functional changes may account for the pathological impact of EMF on the male reproductive system reported in the experimental work that we and others have conducted. While EMF is currently being used for a number of therapeutic applications (REF), the work we have reviewed here clearly indicates a range of harmful effects, especially on genital systems.

http://bit.ly/2dTj1oT

--

Houston B, Nixon B, King BV, De Iuliis G, Aitken RJ. The effects of radiofrequency electromagnetic radiation on sperm function. Reproduction. 2016 Sep 6. pii: REP-16-0126. [Epub ahead of print].

Abstract

Mobile phone usage has become an integral part of our lives. However, the effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted by these devices on biological systems and specifically the reproductive systems are currently under active debate. A fundamental hindrance to the current debate is that there is no clear mechanism of how such non-ionising radiation influences biological systems. Therefore, we explored the documented impacts of RF-EMR on the male reproductive system and considered any common observations that could provide insights on a potential mechanism. 

Among a total of 27 studies investigating the effects of RF-EMR on the male reproductive system, negative consequences of exposure were reported in 21. Within these 21 studies, 11 of the 15 that investigated sperm motility reported significant declines, 7 of 7 that measured the production of reactive oxygen species documented elevated levels and 4 of 5 studies that probed for DNA damage highlighted increased damage, due to RF-EMR exposure. Associated with this, RF-EMR treatment reduced antioxidant levels in 6 of 6 studies that studied this phenomenon, while consequences of RF-EMR were successfully ameliorated with the supplementation of antioxidants in all 3 studies that carried out these experiments. 

In light of this, we envisage a two-step mechanism whereby RF-EMR is able to induce mitochondrial dysfunction leading to elevated ROS production. 

A continued focus on research which aims to shed light on the biological effects of RF-EMR will allow us to test and assess this proposed mechanism in a variety of cell types.

http://bit.ly/2cJJ2pE


Conclusion

To date, contradictory studies surrounding the impacts of RF-EMR on biological systems maintain controversy over this subject. Nevertheless, research into the biological responses stimulated by RF-EMR is particularly important given our ever-increasing use of mobile phone technology. While clinical studies are identifying possible detrimental effects of RF-EMR, it is imperative that mechanistic studies are conducted that elucidate the manner in which RF-EMR perturbs biological function, thus supplying a rational cause. A focus on the male reproductive this system may experience as consequences of the personal storage of mobile devices, the unique vulnerability of the highly specialised sperm cell, and the future health burden that may be created if conception proceeds with defective, DNA-damaged spermatozoa. While this subject remains a topic of active debate, this review has considered the growing body of evidence suggesting a possible role for RF-EMR induced damage of the male germ line. In a majority of studies, this damage has been characterized by loss of sperm motility and viability as well as the induction of ROS generation and DNA damage. We have therefore given consideration to the potential mechanisms through which RF-EMR may elicit these effects on spermatozoa, which we utilized as a sensitive model system. We propose a mechanistic model in which RF-EMR exposure leads to defective mitochondrial function associated with elevated levels of ROS production and culminates in a state of oxidative stress that would account the varying phenotypes observed in response to RF-EMR exposure. With further complementary data, this model will provide new impetus to the field and stimulate research that will allow us to confidently assess the reproductive hazards of mobile phone usage.

--

Adams JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones on sperm quality: A systematic review and meta-analysis. Environment International. 70:106-112. September 2014.

Summary 

Mobile phones are owned by most of the adult population worldwide. Radio-frequency radiation (RFR) from these devices could affect sperm development and function. Around 14% of couples in high- and middle-income countries have difficulty conceiving. Male infertility is involved approximately 40% of the time. Several countries have reported unexplained declines in semen quality.
Animal research has found that RFR can affect the cell cycle of sperm, increase sperm cell death and produce histological changes in the testes. Research on humans has found that prolonged mobile phone use is associated with decreased motility, sperm concentration, morphology and viability suggesting a likely impact on fertility.

The authors of this peer-reviewed study conducted a systematic review of the research and a quantitative analysis to determine whether exposure to mobile phone radiation affects human sperm quality. Participants were from fertility clinics and research centers.

The study examined the sperm quality outcome measures most frequently used to assess fertility in clinical settings: motility (the ability to move properly through the female reproductive tract), viability (the ability to fertilize the egg), and concentration (the number of sperm in a milliliter of ejaculate).

Ten studies were examined including 1,492 human sperm samples. Exposure to mobile phones was found to be associated with a significant eight per cent average reduction in sperm motility and a significant nine per cent average reduction in sperm viability. The effects on sperm concentration were more equivocal. The results were consistent across experimental laboratory studies and correlational observational studies.

The authors concluded that the overall results suggest that mobile phone exposure negatively affects sperm quality in humans. The clinical importance of these effects  in this study may be limited to subfertile men and to men at the lower-end of the normal spectrum.
This open access paper is available at: http://bit.ly/cellphonespermdamage.

--

Liu K, Li Y, Zhang G, Liu J, Cao J, Ao L, Zhang S. 
Association between mobile phone use and semen quality: a systemic review and meta-analysis. Andrology. 2014 Jul;2(4):491-501. Epub 2014 Apr 3.

Abstract

Possible hazardous health effects of radiofrequency electromagnetic radiations emitted from mobile phone on the reproductive system have raised public concern in recent years. This systemic review and meta-analysis was prepared following standard procedures of the Cochrane Collaboration and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement and checklist. Relevant studies published up to May 2013 were identified from five major international and Chinese literature databases: Medline/PubMed, EMBASE, CNKI, the VIP database and the Cochrane Central Register of Controlled Trials in the Cochrane Library. Eighteen studies with 3947 men and 186 rats were included in the systemic review, of which 12 studies (four human studies, four in vitro studies and four animal studies) with 1533 men and 97 rats were used in the meta-analyses. Systemic review showed that results of most of the human studies and in vitro laboratory studies indicated mobile phone use or radiofrequency exposure had negative effects on the various semen parameters studied. However, meta-analysis indicated that mobile phone use had no adverse effects on semen parameters in human studies. In the in vitro studies, meta-analysis indicated that radiofrequency radiation had detrimental effect on sperm motility and viability in vitro [pooled mean difference (MDs) (95% CI): -4.11 (-8.08, -0.13), -3.82 (-7.00, -0.65) for sperm motility and viability respectively]. As for animal studies, radiofrequency exposure had harmful effects on sperm concentration and motility [pooled MDs (95% CI): -8.75 (-17.37, -0.12), -17.72 (-32.79, -2.65) for sperm concentration and motility respectively]. Evidence from current studies suggests potential harmful effects of mobile phone use on semen parameters. A further multicentred and standardized study is needed to assess the risk of mobile phone use on the reproductive system.


https://www.ncbi.nlm.nih.gov/pubmed/24700791


Recent papers (Updated: 3/23/2017)

Abeer M. Hagras, Eman A. Toraih, Manal S. Fawzy. Mobile phones electromagnetic radiation and NAD+-dependent Isocitrate Dehydrogenase as a mitochondrial marker in Asthenozoospermia. Biochimie Open. Available online July 25, 2016. http://bit.ly/2b69gh9

Adams JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones on sperm quality: A systematic review and meta-analysis. Environment International70:106-112. September 2014. http://bit.ly/cellphonespermdamage

Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008 Jan;89(1):124-8. http://www.ncbi.nlm.nih.gov/pubmed/17482179

Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, Sharma R. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92(4):1318-25. http://www.ncbi.nlm.nih.gov/pubmed/18804757

Agarwal A, Singh A, Hamada A, Kesari K. Cell phones and male infertility: a review of recent innovations in technology and consequences.Int Braz J Urol. 2011; 37(4):432-54. http://www.ncbi.nlm.nih.gov/pubmed/21888695


Akdag MZ, Dasdag S, Canturk F, Karabulut D, Caner Y, Adalier N. Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats? J Chem Neuroanat. 2016 Jan 8. http://1.usa.gov/1RjkMVb

Al-Quzwini OF, Al-Taee, Al-Shaikh SF. Male fertility and its association with occupational and mobile phone towers hazards: An analytic study. Middle East Fertility Society Journal. 2016 Apr 8. http://bit.ly/1SRUWWs

Bin-Meferij MM, El-Kott AF. The radioprotective effects of Moringa oleifera against mobile phone electromagnetic radiation-induced infertility in rats.Int J Clin Exp Med. 2015 Aug 15;8(8):12487-97. eCollection 2015. http://1.usa.gov/1MURLR1

Boga A, Emre M, Sertdemir Y, Uncu İ, Binokay S, Demirhan O. Effects of GSM-like radiofrequency irradiation during the oogenesis and spermiogenesis of Xenopus laevis. Ecotoxicol Environ Saf. 2016 Mar 24;129:137-144. http://1.usa.gov/1VQh4pP

Çetkin M, Kızılkan N, Demirel C, Bozdağ Z, Erkılıç S, Erbağcı H. Quantitative changes in testicular structure and function in rat exposed to mobile phone radiation. Andrologia. 2017 Jan 26. http://bit.ly/2jIxlyh

Houston B, Nixon B, King BV, De Iuliis G, Aitken RJ. The effects of radiofrequency electromagnetic radiation on sperm function. Reproduction. 2016 Sep 6. pii: REP-16-0126. 
http://bit.ly/2cJJ2pE

Lewis RC, Mínguez-Alarcón L, Meeker JD, Williams PL, Mezei G, Ford JB, Hauser R; EARTH Study Team.Self-reported mobile phone use and semen parameters among men from a fertility clinic. Reprod Toxicol. 2016 Nov 9. pii: S0890-6238(16)30408-7. http://bit.ly/2fV0DuM (Note: Authors report conflict of interest and limited statistical power to detect effects.)

Li R, Yang WQ, Chen HQ, Zhang YH. Morinda Officinalis How improves cellphone radiation-induced abnormality of LH and LHR in male rats. Article in Chinese.  2015 Sep;21(9):824-7. http://bit.ly/1Sn6Qsy

Liu Q, Si T, Xu X, Liang F, Wang L, Pan S. Electromagnetic radiation at 900 MHz induces sperm apoptosis through bcl-2, bax and caspase-3 signaling pathways in rats. Reprod Health. 2015; 12:65. http://bit.ly/2hhk9mF

Ma HR, Cao XH, Ma XL, Chen JJ, Chen JW, Yang H, Liu YX. [Protective effect of Liuweidihuang Pills against cellphone electromagnetic radiation-induced histomorphological abnormality, oxidative injury, and cell apoptosis in rat testes]. Zhonghua Nan Ke Xue. 2015 Aug;21(8):737-41. [Article in Chinese]. http://1.usa.gov/1MtbdCM 

Nakatani-Enomoto S, Okutsu M, Suzuki S et al. Effects of 1950 MHz W-CDMA-like signal on human spermatoza. Bioelectromagnetics. 11 Jun 2016. http://bit.ly/28L7nE5

Odacı E, Hancı H, Yuluğ E, Türedi S, Aliyazıcıoğlu Y, Kaya H, Çolakoğlu S.Effects of prenatal exposure to a 900 MHz electromagnetic field on 60-day-old rat testis and epididymal sperm quality. Biotech Histochem. 2015 Oct 15:1-11. http://1.usa.gov/1LB2jyE

Oyewopo AO, Olaniyi SK, Oyewopo CI, Jimoh AT. Radiofrequency electromagnetic radiation from cell phone causes defective testicular function in male Wistar rats. Andrologia. 2017 Mar 6. http://bit.ly/2lZ1rP1

Pandey N, Giri S, Das S, Upadhaya P. Radiofrequency radiation (900 MHz)-induced DNA damage and cell cycle arrest in testicular germ cells in swiss albino mice. Toxicol Ind Health. 2016 Oct 13. http://bit.ly/2e1OscT
 

Parsanezhad M, Mortazavi SMJ, Doohandeh T, Namavar Jahromi B, Mozdarani , Zarei A, Davari M, Amjadi S, Soleimani A, Haghani M. Exposure to radiofrequency radiation emitted from mobile phone jammers adversely affects the quality of human sperm. International Journal of Radiation Research. 15(1). Jan 2017. http://bit.ly/2nyVhck

Radwan, M, Jurewicz, J, Merecz-Kot, D,  Sobala, W, Radwan, P, Bochenek, M, Hanke, W. Sperm DNA damage—the effect of stress and everyday life factors. International Journal of Impotence Research. 14 April 2016. http://bit.ly/1W0igXi

Saygin M, Asci H, Ozmen O, Cankara FN, Dincoglu D, Ilhan I. Impact of 2.45 GHz microwave radiation on the testicular inflammatory pathway biomarkers in young rats: The role of gallic acid. Environ Toxicol. 2015 Aug 13. doi: 10.1002/tox.22179. [Epub ahead of print] http://www.ncbi.nlm.nih.gov/pubmed/26268881?dopt=Abstract

Sepehrimanesh, M. & Davis, D.L. Proteomic impacts of electromagnetic fields on the male reproductive system. Comp Clin Pathol (2016). doi:10.1007/s00580-016-2342-x. http://bit.ly/2dTj1oT

Sokolovic D, Djordjevic B, Kocic G, Stoimenov TJ, Stanojkovic Z, Sokolovic DM, et al. The Effects of Melatonin on Oxidative Stress Parameters and DNA Fragmentation in Testicular Tissue of Rats Exposed to Microwave Radiation. Adv Clin Exp Med. 2015 May-Jun;24(3):429-36. doi: 10.17219/acem/43888. http://1.usa.gov/1hJdzAz

Solek P, Majchrowicz L, Bloniarz D, Krotoszynska E, Koziorowski M. Pulsed or continuous electromagnetic field induce p53/p21-mediated apoptotic signaling pathway in mouse spermatogenic cells in vitro and thus may affect male fertility. Toxicology. 2017 Mar 16. pii: S0300-483X(17)30092-6. http://bit.ly/2ntlHvN


Wang D, Li B, Liu Y, Ma YF, Chen SQ, Sun HJ, Dong J, Ma XH, Zhou J, Wang XH. [Impact of mobile phone radiation on the quality and DNA methylation of human sperm in vitro]. [Article in Chinese]. Zhonghua Nan Ke Xue. 2015 Jun;21(6):515-520. http://1.usa.gov/1OTD4tG

Wessapan T, Rattanadecho P. Temperature induced in the testicular and related tissues due to electromagnetic fields exposure at 900 MHz and 1800 MHz. International Journal of Heat and Mass Transfer, 102:1130-1140. 2016. http://bit.ly/2bh0xtd

Yildirim et al. What is harmful for male fertility, cell phone or the wireless internet? Kaohsiung Journal of Medical Sciences. Published online Jul 26, 2015. Abstract and summary: http://www.saferemr.com/2013/03/opposition-to-los-angeles-public.html.

Zang Z, Ji S, Huang S, Jiang M, Fang Y. (2016) Impact of Cellphone Radiation on Sexual Behavior and Serum Concentration of Testosterone and LH in Male Mice. Occupational Diseases and Environmental Medicine, 4(3):56-62. http://bit.ly/2bgF6Y4

Zhang G, Yan H, Chen Q, Liu K, Ling X, Sun L, Zhou N, Wang Z, Zou P, Wang X, Tan L, Cui Z, Zhou Z, Liu J, Ao L, Cao J. Effects of cell phone use on semen parameters: Results from the MARHCS cohort study in Chongqing, China. Environ Int. 2016 Mar 4;91:116-121. http://1.usa.gov/1pvU2YV

Zilberlicht et al. Habits of cell phone usage and sperm quality – does it warrant attention? Reproductive BioMedicine Online, 31(3):421-426. September 2015. http://www.ncbi.nlm.nih.gov/pubmed/?term=26206279